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Abstract

Current agents use communication in a collaborative setting,
exchanging truthful information to achieve a common plan.
This paper defines games where agents may exchange infor-
mation about the physical situation (both fluents and action
events), arbitrarily nested beliefs, and action consequences,
to manipulate other agents for their own goals, i.e. guide
the other agents’ own reasoning and planning. We propose
a model for an ”agent mind” that can cater for all these as-
pects through revisable, prioritized belief bases; goal recog-
nition including epistemic situations; or planning including
speech acts with structured content. We also discuss recent
algorithms to address each one of them, and propose a con-
crete implementation for a future stage.

Introduction
We define manipulation games as games in which players
not only affect some shared physical state, but also exchange
information in the hope of influencing the other players so
their goals can be achieved. Goals are often hidden from
other players, and may or may not be conflicting. Observ-
ability is often restricted, and information can only be gained
through third-party accounts. In this paper, we propose an
action language specification and a doxastic model to reason
about and share both actions and beliefs that enable manip-
ulation of agents in games. Not all aspects of reasoning (e.g.
fully reasoning about actions, or the planning of actions it-
self) have been implemented in source code, but suitable al-
ternatives have been identified for each of the processes in
the model.

Manipulation Games
Interactions with NPCs in RPG-like games can be modelled
as non-zero sum games with hidden goals. Although there
are sources of knowledge, stemming from observability (ei-
ther an agent observes a situation or another agent directly),
most information is more or less grounded belief, specially
about the beliefs and motivations of other agents. Since only
actions can be truthfully observed, intent and plan recogni-
tion are the only ways to estimate what another agent wants
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and believes, so the agent can adjust their own plans. After
these models are built, one agent can plan to provide such
information that other agents conclude beliefs or take ac-
tions in a way that benefits the planning agent. We need to
consider such capabilities as:

• Reasoning and representation: reason about predicates
with open world assumptions with a base of prioritized
beliefs, and represent communicative actions

• Goals, goal recognition and goal recognition design: find
out about other agents’ plans to guide the planning

• Discourse and action planning: plan actions and predi-
cates to communicate to indirectly guide other agents’ ac-
tions

Agents, in fact, assume that all of them perform the same
loop when facing a change in the environment: first non-
obvious predicates are deduced from existing and new in-
formation; then the goals of the agents involved in the
new situation are re-assessed; and then current actions are
re-planned, or new actions are planned. The classic game
Diplomacy, in fact, restricts its mechanics in such a degree
that these mechanisms are the basis for the game.

A related field, from which we borrow, is that of persua-
sion and argumentation theory. A description of how auto-
mated planning techniques can be used to promote argu-
ments can be found in (Black, Coles, and Bernardini 2014)
and (Black, Coles, and Hampson 2017). We argue that ma-
nipulation expands the set of actions available in an argu-
mentation setting by considering false or incomplete pred-
icates, and relying on the other agents’ internal processing
like its own goal recognition or higher order reasoning.

Small treatise about manipulation for honest
people1

Let us consider a sample fantasy RPG scenario with three
actors: Aisha, Bo Yang and Chinira. The three of them are
officers in the same army, and Chinira is the common boss
of Aisha and Bo Yang.

Aisha has currently a goal of recovering the McGuffin of
Diabolic Wisdom, which she hid in the common room of

1A humble tribute to (Joule, Beauvois, and Deschamps 1987)



Bo Yang’s squad instead of her own, so nobody could think
she was in its possession. The issue is not trespassing, she
can freely enter this room, but rather concealment; she can-
not risk Bo Yang’s soldiers and Bo Yang himself seeing the
artifact and learning about it. At least one person from Bo
Yang’s squad is always present there, and they would ques-
tion Aisha if she searched the room. Additionally, Bo Yang
despises Chinira, believing her to act in a purely selfish man-
ner, attributing her a goal of self promotion.

During the paper we will show a formal description of the
messages exchanged, and the beliefs and plans generated by
the agents within bounding boxes.

Previous Work
This framework is very similar to a BDI architecture (Rao,
Georgeff, and others 1995), as it endows agents with beliefs
and desires, or goals. We believe, however, that few, if any,
BDI implementations use the kind of techniques that we pro-
pose support manipulation games, like higher order reason-
ing, goal recognition or epistemic planning.

Horswill’s MKULTRA (Horswill 2018) is a superb imple-
mentation of a manipulation game and an inspiration for the
current work. The player can insert beliefs into other agents’
minds to solve various puzzles. The areas where this work
aims at improving MKULTRA are the use of full-fledged
logical reasoning, instead of logic programming; higher-
order beliefs; and a more oblique manipulation through
planning/goal recognition and the re-evaluation of source re-
liabilities.

Ryan’s Talk of the Town (Ryan et al. 2015) presents a sys-
tem where bounded rationality and memory in agents creates
a compelling narrative. Talk of the Town does not imple-
ment a complex model for agent reasoning, but on the other
hand, agents follow complex schedules through which they
acquire first- and second information about other agents.

(Ware and Siler 2021) describe a narrative planner that
takes into consideration intentions and beliefs. However,
characters themselves seem to use utility functions to choose
actions, and do not reason about their own beliefs and those
of other agents.

Within the automated planning community, epistemic
planning (taking the epistemic state of other agents into con-
sideration) has become so important as to have a dedicated
workshop in ICAPS 2020 (https://icaps20subpages.icaps-
conference.org/workshops/epip/). The work in (Shvo et al.
2020) includes epistemic plan recognition (which includes
epistemic planning itself) leveraging the planners in (Le et
al. 2018), (Wan, Fang, and Liu 2021) and (Muise et al.
2015). The authors are unsure whether belief (KD45) or
knowledge (S5) is considered in these planners, and whether
communication extends beyond the truth value of single flu-
ents.

Multi agent systems such as (Panisson et al. 2018) pro-
vide a good foundation when it comes to theory of mind
and speech acts, but deal with agent collaboration, whether
implicit or explicit. This work instead focuses on taking ad-
vantage of the agents’ reasoning strategies to obtain the de-
sired result, regardless of whether this result is beneficial to

Figure 1: Internal Agent Model

the other agent. A noteworthy exception is (Black, Coles,
and Bernardini 2014), which studies persuasion (a compo-
nent of manipulation). The work on prioritized belief bases
with non-idempotent operations presented in (Velázquez-
Quesada 2017) models manipulation of human agents in our
opinion.

Reasoning and Knowledge Representation
As we have mentioned before, each agent performs a loop
of goal recognition and sensing followed by action planning,
supported by doxastic reasoning, in a variation of the tradi-
tional Sense-Plan-Act loop.

The internal model of each agent, as illustrated in Figure
1, consists of a prioritized and time-versioned belief base
including certain knowledge (sensing actions), a list of in-
ternal goals and associated plans, and a set of agent models
with the same structure, rebuilt whenever new information
is added. The state is updated by processes of belief inser-
tion, planning, goal recognition and higher order epistemic
reasoning, as described in the rest of the paper.

Dynamic Epistemic Logic has often been used to model
reasoning of higher order beliefs such as those that can
be expressed in this model. It is a formalism describing
epistemic states and their changes after executing actions,
which has experienced a substantial growth in the last 15
years. A very complete account of its evolution from pub-
lic announcement logics to its current form can be found in
(Van Ditmarsch, van Der Hoek, and Kooi 2007). It has been
applied to areas such as cryptography or logic puzzles, and
extended to different areas like modelling questions or epis-
temic planning.

However, we have found two important shortcomings in
this family of logics:

• it puts the burden on the problem to fully specify the ini-
tial model;

• it models actions as semantic changes that directly modify
this model, without few guidelines about what conditions
should the actions fulfill to preserve model properties (e.g.
KD45 for belief or S5 for knowledge) across updates, as
Herzig has pointed out in (Herzig 2017).

Hence, we have decided to focus on actions with syntac-
tic effects as much as possible (e.g. forcing as a result that



A believes in p after an action), so the user of the model
needs to build partial models from the acting agent’s point of
view using techniques like tableaux whenever it is necessary,
adding computational burden at the expense of flexibility.
We have nonetheless studied the formalization of prioritized
belief bases from a DEL perspective as described in (Baltag
and Smets 2008). Observability and sensing primitive ac-
tions also allow us to derive knowledge (S5) modal formu-
las, in a way similar to that described in (Baral et al. 2015).
A separate language for action specifications describes what
an agent plans to do or is doing, within the syntax of the
belief logic.

Doxastic Resoning
The doxastic model proposed consists of prioritized belief
bases as described in (Rott 2009): an ordered list of sets
of sentences, with most plausible sentences placed closer to
the head of the list, followed by first hand, present-time, di-
rect knowledge. We keep an open world assumption in our
framework: having a p or ¬p explicitly in an agent’s belief
base means that they actually B(p) or B(¬p). The lack of be-
lief about p means that they will not commit on any valuation
for p: complete uncertainties (formulas for which agents do
not have any preference) will not be represented in the base.
Prioritized belief bases generate a corresponding system of
spheres model, where possible world sets are filtered by each
layer in the base. Since sentences can be removed due to
their origin during an agent’s lifetime, conflicting sentences
may be kept in different levels; the actual belief of the agent
will depend on the relative position of each sentence. An ex-
ample base is presented in Figure 2 with annotations about
the source of the beliefs.

These structures are more succinct than, for example,
POMDP models, since they use logic sentences to express
sets of worlds, and human agents tend to use vaguely defined
confidence or plausibility levels instead of exact probabili-
ties.

Sentences in such a model keep track of their origin, such
as:

• Past direct observations. A belief could be implicitly
formed about the current situation depending on a state
that was observable in the past, but not anymore, with
its plausibility degrading with time up to complete uncer-
tainty being removed from the belief base.

• Accounts from other agents, accepted according to ob-
served certainties and the perceived ”honesty record” of
other agents.

• Abduction, mainly targeted at action reasoning, so causes
will be ordered according to their plausibility depending
on the simplicity of their attributions to effects.

• Induction, for agents that perform some kind of statistical
analysis of observed facts.

Note that the current paper does not propose explicit
mechanisms for the inclusion of a belief in the base, apart
from these suggestions.

A version timeline of the belief base is kept, so past and
point temporal modalities like AT(t=3)(p) can be used to

refer to any (including the acting) agent’s beliefs. Deduced
propositions are indirectly referenced whenever a check us-
ing a tableau starts.

We allow the following types of predicates in the belief
base:

• first order predicates; e.g. has(B, knife)

• visibility statements of first order predicates; e.g. see(A,
has(B, knife))

• temporal statements of any other item; e.g. ATt=3(has
(B, knife))

• goal statements about agents; e.g. GOALA(catch killer)

• statements about actions with preconditions and
postconditions, with probabilistic outcomes; e.g.
search room{pre : empty(room 123); post : {t :=
t + 3 with p = 1; in(knife, room 123) with p =
0.5;¬in(knife, room 123) with p = 0.5}}

• predicates that express that an action has just been per-
formed; e.g. done(fired(A,B))

• beliefs from other agents; e.g. BA(is killer(B))

Special predicates like those described in (Marques and
Rovatsos 2015) can be expressed using modalities about
goals, actions and beliefs. The GOALA(p) modality ex-
presses that agent A will take actions that make it more prob-
able for proposition p to become true. One can express the
preferred next action for agent A as GOALA(done(act())).
Predicates about knowledge like unknown(a; que) (the an-
swer to question que is unknown to agent a) can be ex-
pressed as ∀X(¬BA(que(X))).

To allow some approximation to probabilistic reason-
ing, plausibilities are related to discrete probabilities. Val-
ues from 0 to 2n, expressing probabilities from 0 to 1, are
used. Operations that would result in intermediate values are
rounded towards 2(n−1), a probability of 0.5. This value is
important since it represents uncertainty, and as such can be
removed from the belief base. We expect long term reason-
ing to be ”diluted” in this way to control state explosion,
since the further a result is in terms of operations (e.g. a situ-
ation several steps ahead in a plan), the more probable it is to
turn into an uncertainty. In no way are complex probabilistic
logic frameworks (e.g. Markov logic networks) involved in
these estimations: derived statements always inherit the least
plausible value from those among all the input statements.

In Figure 2 we can see a prioritized belief base consist-
ing of three layers, each with a certain plausibility. In this
example, we will use a value of 0 to 16 levels of probabil-
ity, with a plausibility of 0 corresponding to a probability of
1, and 8 corresponding to complete uncertainty (50/50 esti-
mation), and therefore not represented. Note that believing p
with plausibility plaus higher than 8 is equivalent to believ-
ing ¬p with plausibility 16− plaus. In the example, we see
levels of plausibility from 1 to 6, that would correspond to
probabilities 15

16 (almost certain) to 9
16 (more likely than not).

Note that certain knowledge is assumed to come only from
direct observation in the current moment, so it is tracked sep-
arately. This structure induces a system of spheres, where
each sphere includes layers from the base incrementally, as



Figure 2: Prioritized Belief Base

long as the sentences from a less plausible layer do not con-
tradict those from a more plausible one. Let us see what
spheres would be induced by this base:

• Plausibility 1 / Probability 15
16 : all worlds complying with

p, q ∨ r (e.g. pqrst, pq̄rst, pqr̄st̄)

• Plausibility 3 / Probability 12
16 : all worlds complying with

p, q, s⊕ t (e.g. pqrst, pqr̄s̄t̄), within the previous sphere

The last layer contradicts previous, more plausible beliefs,
and therefore does not induce any layer.

Keeping past states of this base and referring to them
using dedicated past and point modalities allows us non-
monotonic reasoning, since only new beliefs are added to the
base, as all beliefs are implicitly tagged with the moment in
which they were believed. A belief in p is not replaced, but
rather it is asserted that ATt=3¬p but also ATt=6p.

First-hand, certain knowledge is handled apart from be-
lief. This may exclude certain scenarios of misunderstand-
ings: the step where an agent creates a false belief from a
truthful observation. In the film ”Knives Out”, Great Nana
mistakes character Marta for another, even though Marta
is standing at plain sight in front of her. Marta then de-
rives the incorrect belief that Great Nana has recognized her,
since this model takes a ”sensing” action by another agent as
something about which we can have certain knowledge (and
we see how this may not always be the case).

Action Representation
Actions are first class objects in the language. Precondi-
tions and postconditions can be communicated and they are
certainly used in planning, but in no way are they consid-
ered immutable or fixed. This has already been described in
(Steedman and Petrick 2007), which uses a special purpose
database. This is specially the case for communicative ac-
tions, which have few if any preconditions (e.g. ¬BA(p) ∧
¬BA(¬p) for ask(A, ”p”, {}, {B})) and can be easily ex-
tended as we will see later in .

The postconditions of actions can have three different na-
tures, as summarized in 3:

• ontic, e.g. open(door). The specification for ontic (phys-
ical) actions is very similar to traditional specification in
STRIPS planning: a list of set/unset atomic predicates.

Figure 3: Action Postconditions

• epistemic, e.g. see(B,
open(door)). Epistemic effects are tracked through ob-
servability predicates, as opposed to epistemic model
modification as in logics in the DEL family, due to the is-
sues of semantic action models as explained before. Note
that observability itself is directly observable and appli-
cable (we know for sure whether agent A sees something
if we see them), and hence is an epistemic, not doxastic,
effect.

• doxastic, e.g. BB(GOALA(out(A, room))). These ef-
fects can be computed using doxastic logic and goal
recognition, as will be detailed later, and therefore depend
on what the acting agent believes about the other agents;
these complex effects will need to be evaluated again in
every individual planning step, and may of course be in-
correct if the higher order beliefs are themselves incorrect.

An agent may communicate action specifications (precon-
ditions and effects). Both linear and contingent action plans
can be communicated as composite actions using sequence
(;), nondeterministic (∪) and test (?) operators as in dynamic
logics (e.g. as described in (Bolander et al. 2019)). We have
decided not to cover unbounded iteration, since finite plans
will be easier to check.

We consider the following basic actions in our framework:

• Perform an action with pure ontic or epistemic effects;
e.g. fire(E,D)

• Say a proposition to a set of agents; e.g.
say(A, ”∃XATt=3(done(fire(X,D)))”, {B,C}),
which means that A says to B and C that someone fired
upon D at t=3.

• Ask an agent about something to a set of agents,
that is, check the validity of a statement or re-
quest a value for the free variables in a statement
that makes it true according to their beliefs, e.g.
ask(A, ”ATt=3(done(fire(E,D)))”, {}, {B,C} or
ask(A, ”ATt=3(done(fire(X,D)))”, {X}, {B,C}

• Request an agent to do somehing, e.g.
request(A, ”ask(B, ”BELC(ATt=3(done(fire(X,D)))”,
{X}, {C}”, {B})
Internal actions are considered in planning, but they are

not modelled as communicative acts. The reason is that they
are clear enough to be modelled by each agent, and also



known to happen whenever enough information is provided
(a goal may be recognized as soon as there is evidence for
it). There is no need to communicate anything about inter-
nal actions because all agents have enough stable knowledge
to reason about them, even though the specific treatment of
each agent of course depends on their beliefs. Agents how-
ever need to have a bounded rationality, so we cannot rely on
other agents to come to conclusions, even though they may
be logically valid.

First Act: Aisha Talks to Chinira
Aisha provides Chinira with the information that an incom-
ing squad includes a spirit, vulnerable to a ritual from a cer-
tain book. This information comes from Deepak, an unreli-
able source, but Aisha hides this uncertainty from the mes-
sage to let Chinira draw her own conclusions.

A
say(∀X(in(patrol,X)⇒ BX(in(squad, spirit))))

Chinira incorporates Aisha’s account with high plausibil-
ity in their prioritized belief base based on a previous track
record of complete and accurate information. A lower plau-
sibility could have been assigned if e.g. induction had shown
that information from source Aisha is not reliable when
checked against facts. Also, a higher, conflicting evidence
already present (e.g. the report from an inside informant)
would also have invalidated Aisha’s information due to the
construction of the spheres from the base. Using a simple
breadth-first search, Chinira decides to request Bo Yang to
stay in the garrison while she goes with her own squad to
the ruins where this book is located, as other actions (send-
ing Aisha or Bo Yang, perceived as inferiors; using some
other strategy against the spirit; not doing anything in the
hope of the spirit posing a lesser threat) would pay a lower
performance/cost balance, always according to her current
beliefs.

C
in(squad, spirit) : plaus 1

Plan: (go(ruins); get(book); fight(squad))
request(C, request(A, stay()), B), {A})

Goals, Goal Recognition and Goal Recognition
Design

Beliefs and goals are not directly observable: an agent can
only infer them in another agent through observation of their
behaviors. Goal recognition is, thus, a very important piece
of manipulation games. Whether an action is taken or not
depends on the beliefs about preconditions and effects, and
whether the effects lead to a goal. Goal recognition is a kind
of abduction process, where agents’ goals are deemed the
most probable or concise explanation for those agents’ ac-
tions. To illustrate the importance of goals and goal recog-
nition, let us take the muddy children puzzle, a staple in dy-
namic epistemic logic. Agents need to assume that every-
one’s goal includes a truthful account of their observations.
Without this assumption, for example with a lying agent, the
puzzle cannot proceed.

Figure 4: Plan and Goal Recognition

The current section only describes the open issue of the
need for goal recognition mechanisms to compute doxas-
tic preconditions of actions in a setting where these include
speech acts like saying, asking or requesting, and beliefs of
other agents may not match the contents of such statements.
We do identify some algorithms as potential candidates for
implementation.

We approach the concepts of desire and intention from
BDI logics (Rao, Georgeff, and others 1995) deriving it from
goal recognition in automated planning and dynamic logics,
rather than the usual Computational Tree Logic. The intu-
ition is that an agent desires a formula φ if, when allowed
a choice, that agent takes an action that maximizes the esti-
mated probability of reaching a state where φ holds, when
compared with any other action to take, according to that
agent’s beliefs. A Bayesian formulation of goal recognition
can be found in (Baker, Tenenbaum, and Saxe 2006). Goal
recognition can be performed using the same planning al-
gorithms as the agent uses for its own plans, as described
in (Ramı́rez and Geffner 2009) and (Ramı́rez and Geffner
2010), instead of relying on a plan library. As described in
the latter, a prior distribution P (G) over the goals G (pri-
ors for goal preference can be incorporated as explained in
(Gusmão, Pereira, and Meneguzzi 2021)) is used to obtain
the likelihoods P (O|G) of the observationO given the goals
G using the cost differences as obtained by a classical plan-
ner. In (Sohrabi, Riabov, and Udrea 2016) additional fea-
tures like unreliable observations and plan recognition, in
addition to goal recognition, are introduced.

In Figure 4 we can see two observed steps, with two possi-
ble plan completions to different goals. We can rule out the
goal in white, due to the second event observed. However,
without some evidence pointing towards one of the grey-
patterned goals, we cannot predict further actions.

It is worth mentioning Geib’s PHATT algorithm as de-
scribed in (Geib and Goldman 2009) for its use of proba-
bilistic actions and AND-OR trees (suitable for contingent
planning and very similar to behaviour trees in game agent
logic). It relies, however, on the description of the structure
of tasks and a preexisting plan library. However, further re-
search into the induction of task structure and hierarchies,
as well as using planning itself as a plan library generation



would be necessary to consider this algorithm.
A further concept in automated planning is goal recog-

nition design, whereby some action is designed to make an
agent’s goals as easy to discover as possible, as described
in (Keren, Gal, and Karpas 2014). By making explicit state-
ments about goals and beliefs in our doxastic model, plan-
ning algorithms as described in the following section can
include actions that reduce uncertainty, like sensing actions
and goal recognition design.

Action and Discourse Planning
Ontic actions can be planned using planners that can han-
dle a probabilistic outcome using the action specifications
stored in the agent’s belief base, like probabilistic planners
or a deterministic planner with replanning like (Yoon, Fern,
and Givan 2007). Also, other multiagent frameworks and
proposals specify preconditions and postconditions for com-
municative actions, e.g. the FIPA standards (FIPA 2008).
FIPA defines epistemic and doxastic preconditions (feasibil-
ity preconditions, FP) and postconditions (rational effects,
RE). These preconditions and postconditions are asserted in
the belief base if an agent detects that action. We could con-
sider these as ”social protocols” that state clearly the goals
of the speaker.

However, a complication for communicative actions in
our setting is that traditional agent frameworks are oriented
toward collaborative agents. Feasibility preconditions ex-
press a socially agreed reason to why the action is per-
formed, but in fact nothing prevents an agent to say whatever
it wants. Furthermore, when seen from the perspective of the
”sender”, a communicative act may be issued precisely to
guide the goal recognition process in the ”receiver” towards
a certain goal or plan. The possession or not of a certain
knowledge does not enable us to ask a question; rather, our
goal of reducing uncertainty or of making another agent be-
lieve that one does not know something is what will compel
us toward that action. In a similar way, evaluating the out-
come of a communicative action needs to take goals into
account.

Postconditions in communicative actions become compli-
cated to compute: the sender has to try and replicate a goal
recognition step, using the receiver’s beliefs about the sender
and goals to the extent to the sender itself’s belief, and then
try to predict what will the receiver belief about the sender’s
intentions. Note that even ontic actions may carry a dox-
astic effect, in the sense that any action is framed within
an estimation of goals. Opening a door is evidence for the
other agent to have run through it, but it may have been left
open on purpose to lure the observer into that conclusion.
We believe that the increase in memory and computation
power of user equipment justifies exploring this modelling.
As mentioned before, re-planning or MCTS techniques in
automated planning have yielded satisfactory results.

Selecting the content to present in a speech act can be
guided by bulding a model for the receiver, including goals
and beliefs, so candidates for items in sentences can be pro-
posed from incomplete proofs (e.g. whether they can close
open branches in a tableaux) or plans (e.g. communicating

action preconditions to the receiver, regardless of their ac-
tual truth) that are related to the current goals. The whole
loop of goal recognition, reasoning and planning is per-
formed in the simulated model for the other agent, to the
extent to which resources can be dedicated. If we belief that
GOALA(catch killer), informing A of has(B, knife) al-
lows it to plan further actions, like asking B for the knife. If
we believe that BA(∀X(has(X, knife)⇒ is killer(X)))
this information item is a particularly powerful lever to guide
A’s actions.

Some authors use existing planners adapted with epis-
temic predicates. For example (Marques and Rovatsos 2016)
modifies the Contingent-FF planner to include requests and
yes/no questions. Also (Muise et al. 2015) apply a classi-
cal planner, the Fast Downward planner (Helmert 2006), to
a multiagent epistemic setting with higher order beliefs us-
ing additional fluents derived from epistemic logic axioms.
However, such an approach must accomodate the expensive
computations for doxastic postconditions.

Second Act: Aisha Talks to Bo Yang
Aisha then takes Chinira’s request to Bo Yang. However, she
mentions Deepak when mentioning the patrol report to Bo
Yang. When issuing Chinira’s request, Aisha does not reveal
how Chinira has come to this conclusion, but she makes it
clear that it comes from Chinira.

A
say(BD(in(squad, spirit)))

say(done(request(C, request(A, stay(), {B}), {A})))
request(A, stay(), {B})

The specification language for higher order epistemic ac-
tions would allow Bo Yang to examine a possible plan where
Aisha’s goal is represented and this observation is matched,
but goal probability priors would rank the corresponding
goal fairly lower than alternative goals from other agents, or
would have too many unknown factors. Bo Yang may sus-
pect that ∃X(GOALX(¬in(B, city))), but he would not be
able to progress the reasoning much further without a lot of
time consuming sensing actions. Bo Yang believes Aisha to
be a loyal individual due again to induction from past ob-
servations. A more plausible goal at play is assuming that
Bo Yang has the goal of impressing higher officers (a wrong
belief that has nonetheless crept up high in Bo Yang’s pri-
oritized belief base due to previous interactions with Aisha)
by recovering the book and keeping him in the garrison. Bo
Yang decides instead to face the incoming army (as he can-
not go for the book himself and clash with Chinira, staying
would result in a loss of face, and no sentence could possibly
land higher in Chinira’s belief base to change their mind in
Bo Yang’s belief). This results in Bo Yang’s soldiers leaving
their barracks for a few days.

B
¬in(squad, spirit) : plaus 4

GOALC(honour(C) > honour(B)) : plaus 1
Plan: (fight(squad))



Conclusion
We have presented a definition for games of manipulation, as
games with open communication and unknown goals, whose
players use models of other agents to guide their actions. We
have pointed out at three aspects that enable these games:
doxastic higher order reasoning, goal recognition, and epis-
temic planning. For each of these areas we have identified al-
ternatives for data structures and algorithms that can support
these aspects. In future communications we plan to present
prototypes for each of them.
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