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Abstract
Let’s Plays of video games represent a relatively unexplored
area for experimental AI in games. In this short paper, we dis-
cuss an approach to generate automated commentary for Let’s
Play videos, drawing on convolutional deep neural networks.
We focus on Let’s Plays of the popular game Minecraft. We
compare our approach and a prior approach and demonstrate
the generation of automated, artificial commentary.

Introduction
Let’s Plays have garnered an enormous audience on web-
sites such as Twitch and YouTube. At their core, Let’s Plays
consist of individuals playing through a segment of a video
game and engaging viewers with improvised commentary,
often times not related to the game itself. There are a number
of reasons why Let’s Plays may be of interest to Game AI
researchers. First, part of Let’s Play commentary focuses on
explaining the game, which is relevant to game tutorial gen-
eration, gameplay commentary, and explainable AI in games
broadly. Second, Let’s Plays focus on presenting engaging
commentary. Thus if we can successfully create Let’s Play
commentary we may be able to extend such work to improve
the engagement of NPC dialogue and system prompts. Fi-
nally, Let’s Plays are important cultural artifacts, as they are
the primary way many people engage with video games.

Up to this point Let’s Plays have been drawn on for tasks
like bug detection (Lin, Bezemer, and Hassan 2019) or learn-
ing game rules (Guzdial, Li, and Riedl 2017). To the best
of our knowledge there have only been two attempts at this
problem, the first focused on generation of a bag-of-words
representation, which is an unordered collection of words
that does not constitute legible commentary (Guzdial, Shah,
and Riedl 2018). The second attempt at this problem in-
stead structured commentary generation as a sequence-to-
sequence generation task (Li, Gandhi, and Harrison 2019).
We do not compare against this second approach as it was
not yet published during the development of this research.
In this paper we present an attempt at generating Let’s Play
commentary with deep neural networks, specifically a con-
volutional neural network (CNN) that takes in a current

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

frame of a gameplay video and produces commentary. As
an initial attempt at this problem we focus on Let’s Plays of
the game Minecraft. We chose Minecraft due to its large and
active Let’s Play community and due to Minecraft’s relative
graphical simplicity. In this paper we present two major con-
tributions: (1) a dataset of Minecraft gameplay frames and
their associated commentary and (2) the results of applying
a CNN to this task, compared to the approach presented by
Guzdial et al. (Guzdial, Shah, and Riedl 2018). The remain-
der of this paper covers relevant prior work, presents our ap-
proach and implementation of the baseline, presents results
of a brief quantitative analysis, and example output of our
approach.

Related Work
This approach aims to take in video game footage (raw pix-
els) and output commentary. To the best of our knowledge
Guzdial et al. (2018) were the first to attempt this prob-
lem. Guzdial et al. focused on a preliminary approach to-
wards Let’s Play commentary of Super Mario Bros. game-
play, but notably could not produce full commentary. Their
approach focused on clustering pairs of Let’s Play com-
mentary utterances and gameplay video and then train-
ing non-deep machine learning models to predict a bag
of words from an input gameplay frame. More recently,
Li et al. (2019) represented artificial let’s play commen-
tary as a sequence-to-sequence generation problem, convert-
ing video clips to commentary. Prior approaches have at-
tempted to create commentary from logs of in-game actions
for both traditional, physical sports games and video games
(Kolekar and Sengupta 2006; Graefe 2016; Barot et al. 2017;
Ehsan et al. 2018; Lee, Bulitko, and Ludvig 2014; Ehsan et
al. 2019). These approaches depend on access to a game’s
engine or the existence of a publicly accessible logging sys-
tem.

This work draws on convolutional neural networks
(CNNs) to predict commentary for a particular frame of a
gameplay video. CNNs have been employed to take an input
snapshot of a game and predict player experience (Guzdial,
Sturtevant, and Li 2016; Liao, Guzdial, and Riedl 2017),
game balance (Liapis et al. 2019), and the utility of particu-
lar game states (Stanescu et al. 2016).



Significant prior work has explored Let’s Play as cultural
artifact and as a medium. For example, prior studies of the
audience of Let’s Plays (Sjöblom and Hamari 2017), content
of Let’s Plays (Sjöblom et al. 2017), and building commu-
nities around Let’s Play (Hamilton, Garretson, and Kerne
2014). The work described in this paper is preliminary as
a means of exploring the possibility for automated genera-
tion of Let’s Play commentary. We anticipate future develop-
ments in this work to more closely engage with scholarship
in these areas.

Other approaches employ Let’s Play videos as input for
alternative purposes beyond producing commentary. Both
Guzdial and Riedl (2016) and Summerville et al. (2016) em-
ploy Longplays, a variation of Let’s Play generally without
commentary, as part of a process to generate video game
levels through procedural content generation via machine
learning (Summerville et al. 2017). Other work has looked at
eSport commentators in a similar manner, as a means of de-
termining what approaches the commentators use that may
apply to explainable AI systems (Dodge et al. 2018). Lin et
al. (Lin, Bezemer, and Hassan 2019) draw on summarizing
metrics of gameplay video including Let’s Plays as a means
of automatically detecting bugs, but do not directly engage
with the video data.

System Overview
In this section, we give a high-level overview of two ap-
proaches (our approach and a baseline) for automated com-
mentary generation. We describe our implementation of the
baseline approach as originally discussed in Guzdial et al.
(Guzdial, Shah, and Riedl 2018). The baseline can be un-
derstood as a variation of our approach in which we test the
assumption that training on clustered subsets of data reduces
the variance of Let’s Play commentary and consequently im-
proves commentary prediction. We first delve into the pre-
processing steps to extract and featurize our data for the ex-
periments. We then describe the two approaches in succes-
sion.

In an idealized final version of this approach, first Let’s
Play videos would be collected with their associated com-
mentary. Second, this data would be preprocessed to featur-
ize the data. Third, this data would be used to train a con-
volutional neural network model. Finally, this new model
would be fed in new video and produce output commentary.

Dataset
For our dataset, we collected three 25-minute YouTube
videos, one each from three popular Minecraft Let’s Play-
ers. We extracted the associated text transcripts for each of
these videos generated by YouTube to serve as our commen-
tary corpus. We applied ffmpeg, an open source tool for pro-
cessing multimedia files, to each video to break apart each
video into individual frames at 1 FPS. Although we observed
that each sentence in the commentary usually spanned a
few frames, we purposely paired each frame with a sen-
tence. In other words, there were multiple frames-comment
pairs with the same commentary. We did this for simplic-
ity’s sake so that it would be easier for our model to learn

the relationship between single frame-comment pairs. We
refrained from converting the images to grayscale to prevent
the loss of any color features. This is especially important
for a game like Minecraft, in which all game entities are
composed of cubes that primarily differ according to color.
In total, our dataset is comprised of 4840 frame-comment
instances, 3600 of which were used for our training set and
the rest for our test set.1

Sentence Embeddings
Sentence embeddings are a standard way in the field of
natural-language processing (NLP) to represent sentences
in a vector-representation appropriate to deep neural net-
works. We tokenized the sentence in each frame-comment
pair and converted it to a 512-dimensional numerical vec-
tor using the Universal Sentence Encoder (Cer et al. 2018).
The Universal Sentence Encoder is a model that is trained
with a deep averaging network (DAN) encoder to convert
plain English strings into a corresponding vector representa-
tion. We used this representation over traditional Word2Vec
word embeddings because the model is specifically catered
towards ’greater-than-word’ length strings such as the sen-
tences and phrases present in our dataset. The sentence em-
beddings produced through this method are better able to
model contextual awareness in sequences of words, which
is crucial for the use case of commentary generation.

Our Approach
For our approach, we trained a convolutional neural network
(CNN) with the 4840 training instances, taking as input the
gameplay frame and predicting the associated commentary
in a sentence embedding representation. The CNN architec-
ture was as follows: (1) a conv layer with 32 3x3 filters fol-
lowed by a max pool layer, (2) a second conv layer with
64 3x3 filters, (3) a third conv layer with 64 3x3 filters fol-
lowed by a max pool layer, (4) a fully connected layer of
length 1024, (5) a dropout layer fixed at 0.9, (6) a fully con-
nected layer of length 512, which represents the final 512-
vector sentence embedding. We used adam (Kingma and
Ba 2014) for optimization (with a learning rate of 0.001)
and mean-square error for our loss function. All layers used
leaky ReLU activation (Xu et al. 2015). We employed Ten-
sorflow (Abadi et al. 2016) and trained until convergence on
our training set (roughly 20 epochs). We note that this ar-
chitecture was constructed by considering architectures for
similarly sized datatsets for image captioning (including Ci-
farNet (Hosang et al. 2015)), a related area for computer vi-
sion given that the Let’s Play utterance can be thought of as
like an abstract caption for the gameplay frame.

Baseline
The baseline, adapted from Guzdial et al. (Guzdial, Shah,
and Riedl 2018), is ironically more complex than our ap-
proach. This approach calls for first clustering the Let’s Play
data as frame and utterance pairs and then training a unique
machine learning model for each cluster individually. Thus

1This dataset is publicly available at:
https://github.com/shukieshah/AutoCommentateDataset.



Figure 1: The medoids of each of the clusters found by the K-Medoids clustering algorithm.

we first cluster our 4840 training instances and then train
the same CNN architecture used on our approach on the
largest of the output clusters. We walk through this process
in greater depth below.

Image Embeddings
For the clustering of the frame and utterance data we re-
represent our gameplay frames in an image embedding rep-
resentation. Image feature embeddings are similar to the sen-
tence embeddings discussed above. These vectors were gen-
erated by passing images through a ResNet (Targ, Almeida,
and Lyman 2016) CNN architecture trained on the ImageNet
dataset (Deng et al. 2009). The images were fed through the
network up to the penultimate activation layer, and the ac-
tivation weights were extracted as features for the particu-
lar image. This allowed us to better represent the context
of the image for clustering purposes without having to di-
rectly compare images to one another, which would have
been highly time consuming.

Clustering
Using the process described in (Guzdial, Shah, and Riedl
2018) we employed K-medoids clustering with K estimated
via the distortion ratio, using means square error as the dis-
tance function for the clusters, comparing both image and
sentence vectors combined into a single vector.

Figure 1 shows the actual medoid instance (frame-
comment pairs) for each of the learned clusters. It is in-

Table 1: Average percentile error of our approach and the
three largest clusters for the baseline.

Model Percent Error Training Set Size
CNN 0.961±0.026 4840
Cluster 9 CNN 0.977±0.023 1336
Cluster 1 CNN 0.975±0.042 802
Cluster 3 CNN 0.980±0.024 684

teresting to note that the the clusters with the most in-
stances (cluster 9 and 1 respectively) comment on ’build-
ing’ things, a key component of Minecraft. Furthermore, the
clustering seems to have chosen clusters that capture unique
moments of gameplay. For example, cluster 2 represents
an opening-screen where Let’s Players typically introduce
themselves and greet the audience. Cluster 3, on the other
hand, represent underground gameplay which is distinctive
both visually and mechanically. From a qualitative stand-
point, the clusters appear to effectively capture high-level
themes. Thus we find it to be a successful implementation
of the Guzdial et al. work (Guzdial, Shah, and Riedl 2018).

Evaluation
Table 1 compares the results of our approach and the base-
line approach for the three largest clusters in terms of the
average percent error on the test set. By average percent er-
ror we indicate the averaged percentile error for each pre-



Figure 2: Each frame is paired with the five closest nearest-neighbors of the model’s actual predicted commentary.

dicted utterance compared to the true utterance across the
test set. Thus lower is better. The lowest possible value of
this measure would then be 0.0 and the highest (and worst)
value would be 1.0. As one can see in Table 1, none of
the approaches do particularly well at this task. This un-
derscores the difficulty in predicting natural language labels
given gameplay frame video only. However, we note that
our approach outperforms the baseline across all three of
its largest clusters. All of the other baseline per-cluster ap-
proaches do strictly worse and so we omit them from our
analysis.

Example Output
Figure 2 shows the predicted commentary and cosine sim-
ilarity scores for three test images for our approach. We
include the closest sentences from our training set to the
predicted sentence encoding as novel commentary due to
the limitations of the Universal Sentence Encoder (Cer et
al. 2018), but with another sentence embedding we could
directly output novel commentary. The commentary repre-
sents the five closest neighbors to the actual predicted output
from the baseline model. As one can see, there are repeats of
predicted sentences across instances. This is because we are
only retrieving commentary from within our training dataset
which may bias certain sentences due to their greater over-
all semantic similarity to other sentences. The ordering and
scores of the predictions vary for different test instances, in-
dicating that the model did not just learn a single strategy.
Although the commentary doesn’t correlate well to the im-
ages shown, the generation of commentary is a promising
advancement from prior work.

Conclusions and Future Work
In this paper we demonstrate an initial approach to Let’s
Play commentary for the game Minecraft. While the initial
results are not particularly impressive, they outperform the
original approach to this problem. We did not compare to
the more recent Li et al. (2019) as it was unavailable during

our research, but we note that they represent the problem
in a significantly different way, making a direct compari-
son non-trivial. Further, the results speak to the difficulty of
this problem, which we anticipate being a fruitful area of
future research. Our primary contributions are our dataset of
Minecraft Let’s Play frames and associated commentary and
the results and analysis presented in this paper.

This work had a number of limitations, which we hope to
address in future work. First, we acknowledge a limitation in
the relative weakness of the results. We imagine two major
reasons for this issue: (1) that the model makes predictions
without knowledge of previous utterances and (2) the size
of the training dataset. Thus we anticipate greater success
by including as input to the model the prior utterance as a
sentence embedding and increasing the size of the training
dataset. The second limitation we identify is in our choice
to limit our output to a single game. While we acknowl-
edge that this is helpful for an initial approach, an ideal
system could take in any arbitrary gameplay video. Further,
increasing the games we include would help us solve the
training dataset size problem. Nonetheless, generalizing to
other types of games would itself present a unique challenge
since context and commentary are highly dependent on the
rules and design of a particular game. Although solving this
problem is nontrivial, in future work we hope to extend this
project to other, popular games for Let’s Plays by abstract-
ing lower level details and focusing on higher level themes
shared across games.
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Sjöblom, M., and Hamari, J. 2017. Why do people watch
others play video games? an empirical study on the mo-
tivations of twitch users. Computers in Human Behavior
75:985–996.
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Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J.
2017. Procedural content generation via machine learning
(pcgml). arXiv preprint arXiv:1702.00539.
Targ, S.; Almeida, D.; and Lyman, K. 2016. Resnet in
resnet: Generalizing residual architectures. arXiv preprint
arXiv:1603.08029.
Xu, B.; Wang, N.; Chen, T.; and Li, M. 2015. Empirical
evaluation of rectified activations in convolutional network.
arXiv preprint arXiv:1505.00853.


