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Abstract

Behavior trees (BTs) are a popular method for modeling NPC
and enemy Al behavior and have been widely used in com-
mercial games. In this work, rather than use BTs to model
game playing agents, we use them for modeling game design
agents, defining behaviors as content generation tasks rather
than in-game actions. Similar to how traditional BTs enable
modeling behaviors in a modular and dynamic manner, BTs
for PCG enable simple subtrees for generating parts of lev-
els to be combined modularly to form complex trees for gen-
erating whole levels as well as generators that can dynami-
cally vary the generated content. We refer to this approach
as Procedural Content Generation using Behavior Trees, or
PCGBT, and demonstrate it by using BTs to model genera-
tors for Super Mario Bros., Mega Man and Metroid levels as
well as dungeon layouts and discuss several ways in which
this paradigm could be applied and extended in the future.

Introduction

Behavior trees (BTs) (Isla 2005; Champandard 2007) are
a commonly used technique and framework for modeling
agent behaviors in games and have seen widespread use in
a large number of commercial games for defining NPC and
enemy Al The popularity of BTs stems from them enabling
such behaviors to be implemented in a modular and reactive
manner. That is, simpler actions and behaviors can be com-
bined to define more complex agent behaviors and differ-
ent BT branches corresponding to different behaviors can be
selected for execution based on various runtime conditions,
thus enabling agents to react dynamically during gameplay.
In addition to game Al, in recent years, BTs have also been
widely employed in robotics for defining behaviors of robot
controllers (Colledanchise and Ogren 2017), thus demon-
strating the general usefulness of BT-based methods.

Hence in this paper, with a view to bring these benefits to
bear on generative methods, we propose the use of BTs for
procedural content generation (PCG). More specifically, we
repurpose BTs to model the behavior of game design agents
rather than game playing agents. By replacing NPC actions
(e.g. Cover and Shoot) with design actions (e.g. Generate
Segment and Connect Rooms), we obtain BTs that are pro-
cedural level generators and are also modular, reactive and
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interpretable like their traditional BT counterparts. We refer
to this framework as Procedural Content Generation using
BTs (PCGBT) and BTs capable of doing so as PCG-BTs.
We demonstrate this approach by developing PCG-BTs for
generating Super Mario Bros. and Mega Man levels as well
as dungeon layouts. We also show that BTs can be used to
describe a generic level generator which can then be instan-
tiated for different games such as Mega Man and Metroid.
Further, we show that subtrees corresponding to different
games could be combined to form a super-tree capable of
generating levels that blend portions of different games. Fi-
nally, we conclude with an extensive discussion on future
applications and implications of this PCGBT framework.
Our work thus contributes, to our knowledge, the first ap-
plication of BTs for explicitly defining game design agents,
and thereby enabling procedural content generation.

Background

Most prior BT-related research has focused on using BTs for
modeling game playing agents and controllers rather than
PCG. Evolving BTs for controlling agents has seen much
work with Lim, Baumgarten, and Colton (2010) focusing on
the real-time strategy game DEFCON and Perez et al. (2011)
and Nicolau et al. (2016) evolving controllers for the Mario
Al framework. Instead of evolution, Robertson and Wat-
son (2015) identified patterns in action sequences for pro-
ducing BTs for StarCraft while Glavin and Madden (2014)
used a reinforcement learning-based approach for building
BTs for bots in Unreal Tournament 2004. In recent years,
robotics has arguably seen more BT research than games.
Comprehensive surveys of BTs in robotics have been given
by Tovino et al. (2020) and Colledanchise and Ogren (2017).

In using tree-like structures to model generators, our
work overlaps with graph and grammar-based generative ap-
proaches. Shaker et al. (2012) used grammatical evolution
to evolve graphs of Mario levels while Dormans (2010) and
Karavolos, Bouwer, and Bidarra (2015) both utilized mis-
sion and space graphs for dungeon generation. Relatedly,
graph grammars have been utilized for generating levels
for Mario (Hauck and Aranha 2020), puzzle games (Valls-
Vargas, Zhu, and Ontafién 2017), dungeon crawlers (Linden,
Lopes, and Bidarra 2013) and educational games (Jemmali
et al. 2020). Rather than graphs, we use an explicit BT for-
mulation for defining level generators. The recently intro-



duced field of PCG via Reinforcement Learning (PCGRL)
(Khalifa et al. 2020; Nam and Ikeda 2019) also seeks to pro-
duce game design agents which perform generative actions.
Instead of RL, we use BTs to model design agents.

Method

In this section we describe our approach. We first describe
how BTs work and then detail how we adapt them for PCG.

Behavior Tree (BT)

A BT is a directed tree structure consisting of a root node
where execution starts, a set of internal (or control flow)
nodes which control the flow of execution and a set of leaf
nodes which define the actions to be executed. The root con-
trols execution by propagating signals called ticks at a pre-
determined frequency. Each node receives ticks from its par-
ent node and propagates it to one or more of its child nodes.
A node executes only if it receives a tick from its parent.
Each child, after finishing execution, returns one of 3 sta-
tuses to its parent—Running, Success or Failure—which in
turn determines the status of the parent. There are typically
4 types of control flow nodes:

» Sequence - execute all their children in order from left
to right until one fails. They return Success only if all of
their children also succeed.

* Selector - execute all their children in order from left
to right until one of them succeeds. They return Failure
only if all of their children fail.

* Parallel - execute their children simultaneously and suc-
ceed if a predetermined number of children succeed.

* Decorator - modify their child behavior node.

Leaf nodes are typically of 2 types:

* Action - execute commands corresponding to the most
low-level behaviour being modeled.

* Condition - used to check conditions and return success
or failure accordingly, corresponding to true and false.

More working and implementation details about BTs
can be found in Champandard and Dunstan (2019) and
Colledanchise and Ogren (2017). Our PCGBT approach is
enabled by having Action nodes perform level design tasks
rather than NPC/enemy behaviors. In this work, we only
used Sequence and Selector control flow nodes since they
were sufficient to demonstrate the application of PCG-BTs
but Parallel and Decorator nodes could also be incorporated
in the future. Further, all nodes in this work returned either
Success or Failure though in the future these could return
Running, while waiting for playability checks to complete,
for example. In general, all features of traditional BTs would
apply to PCG-BTs but due to limited space and wanting to
demonstrate PCG-BTs for multiple games, we focused on
a subset of BT features. In all cases, unless indicated, Con-
dition nodes returned Success or Failure at random, i.e. if
a randomly generated float was less than 0.5, we returned
Success, else Failure. The result was then propagated back
up and branches chosen accordingly, as per typical BT rules.
In all figures in this work, Sequence, Selector, Action and
Condition nodes are represented as orange rectangles, blue
octagons, grey ellipses and grey diamonds respectively.

BTs may optionally also use a blackboard. In its simplest
form, a blackboard is a key-value store that is globally ac-
cessible by all nodes in the tree and used to store information
that may be useful when making decisions. We make exten-
sive use of blackboards in our BT implementations.

Level Generation using BT's

Analogous to how traditional BTs work with a library of
scripted actions which are then combined in different ways
to define different behaviors, the PCG-BTs that we use work
with a library of level segments, which are combined to gen-
erate different levels. That is, executing an action node in a
PCG-BT places a level segment of a certain type as defined
by that node with different action nodes corresponding to
placing different types of segments. We also make use of
global blackboard variables to keep track of the position in
the level where the next segment should be placed. During
execution, each action node updates this position after plac-
ing its node, with updates varying from game to game, e.g.,
in Mario, updates increment the x-coordinate by 1 whereas
in Mega Man, this depends on if the next segment should
be placed above, below or to the right of the current seg-
ment. The blackboard is particularly useful for PCGBT as
it can store globally accessible information useful for aiding
the generative process such as designer preferences for se-
lecting specific node types, player data to determine which
branches to execute, the state of the current game world, etc.

To illustrate how we use BTs to model design agents,
we go through a step-by-step worked example for generat-
ing a Mario level, as shown in Figure 1. In this work, we
use Mario design patterns as defined by Dahlskog and To-
gelius (2012) as the building blocks of levels with different
action nodes corresponding to the placement of segments
with different design patterns. We start with a very simple
tree with 1 leaf node that places a Stair Up segment. This is
then combined with another leaf that generates a Stair Valley
to give us a tree that generates a section consisting of 2 stair
segments. We define a separate tree that generates a section
of 3 Pipe Valleys. Next, we combine these 2 separate BTs to
obtain a larger tree that can now generate a stair section fol-
lowed by a section of pipe valleys. This larger BT could be
further expanded in either direction as shown in the next ex-
amples where we add an enemy section to the right and then
a section of multiple paths to the left. This example demon-
strates how we can build up BTs for generating full levels
by combining smaller BTs that generate level sections, thus
yielding modular level generators, similar to how traditional
BTs enable modeling agent behavior in a modular fashion.
In the next section, we demonstrate applications of BTs for
developing level generators for a number of different games.

Applications

In this section, we demonstrate applications of PCG-BTs for
several games. In all cases, we used levels from the Video
Game Level Corpus (Summerville et al. 2016). BTs were
implemented using py_trees'.

"https://github.com/splintered-reality/py_trees



Figure 1: Worked example depicting a behavior tree modeling the process for generating a Mario level.
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Figure 2: SMB 1-1 PCG-BT along with a recreation of the original level (verbatim) and a variant (sampled).

Figure 3: SMB PCG-BT and example generated levels.

Super Mario Bros. (SMB)

For SMB, we created the library of level segments for the
BTs by extracting non-overlapping 14x16 segments from
VGLC levels. Segments were then padded with 1 row at

the top for consistency in combining with segments from
other games as described later. We manually categorized the
segments based on the design patterns within them. Action
nodes were defined to take one or more design patterns as
parameters and sample a segment from the set of segments
that contain at least one of the desired pattern(s). Different
action nodes could then be combined to form subtrees ca-
pable of generating level sections with different patterns,
which in turn could be combined to form larger trees ca-
pable of generating entire levels. To keep track of the level
during generation, we maintained a globally accessible dic-
tionary on the blackboard, mapping (x,y) coordinates to the
segment generated for that location. At the end of execution,
each action node incremented x by 1 and added the sampled
segment to this dictionary. We show two example BTs with
the first recreating and also generating variations of level 1-
1. We model this level as a BT with 3 top-level sequence
nodes—the first generates the initial section of pipes, the
second generates the middle section of enemies and multiple
paths and the third generates the final stair-filled section. The
BT and 2 sample levels are shown in Figure 2. The first ‘ver-



batim’ sample reproduces the original level by simply copy-
ing the corresponding segment rather than sampling, i.e. we
hard-coded action nodes to pick the exact segment that ap-
pears in the corresponding position in the original level. In
the second ‘sampled’ example, the action node samples a
segment with the same design pattern in the corresponding
position in the original level. These examples show that BTs
can be used to sufficiently model generators capable of pro-
ducing existing levels as well as their variations. The second
example BT and the resulting sampled levels generated us-
ing it are shown in Figure 3. This example demonstrates the
use of Selector nodes for picking between two branches of
execution. The first decides whether to generate a section
of paths and pipes or stairs and enemies while the second
decides between a section with gaps or valleys. The deci-
sion to branch is made in the Do Path-Pipe? and Do Gap?
condition leaf nodes. For these examples, these choices were
made randomly but one could have selection probabilities be
weighted by designer preferences to guide selection. Also,
in a dynamic setting, player data could be used to make the
choice. For example, in Do Gap?, we could check if the
player has already lost a number of lives and generate val-
leys instead of gaps to reduce difficulty. We note that these
BTs generated the entire level in one tick from the root rather
than a repeating loop of ticks like BTs employed at runtime.

Mega Man (MM)

For MM, we constructed a similar library of 15x16 seg-
ments from the VGLC but grouped segments based on the
directions in which they were open rather than design pat-
terns, since this information is crucial for combining seg-
ments such that the overall level is traversable, e.g. a seg-
ment that is open above needs the next segment to be open
below. Each segment was tagged with U, D, L and/or R to
indicate it being open above, below, to the left and/or to the
right respectively. Similar to SMB action nodes, MM action
nodes sampled segments based on the desired opening orien-
tations. Also, since MM levels do not exclusively progress to
the right like SMB, each action node also performed a check
to see if there was an opening between the current segment
being sampled and the previously sampled segment along
the edge adjoining them. This ensured generating segments
such that the resulting level has a traversable path through
it. Similar to the SMB BT, we maintained a level dictionary
on the blackboard in addition to a reference to the previ-
ous segment for performing the aforementioned check. Af-
ter sampling its segment, each action node updated both the
x and y coordinates based on the position of the next seg-
ment. For space, we only show one MM BT in Figure 4.
This generates an initial horizontal section then decides be-
tween generating a horizontal or a vertical section followed
by a middle horizontal section, a vertical section and a fi-
nal horizontal section. Note also that each vertical section
is generated by a Selector that decides whether the section
will progress upward or downward. Similar to SMB, these
decisions were made at random but could be made based on
designer preferences or at runtime based on player behav-
ior. Also like SMB, the BT here used a single root tick to
generate the entire level.

Figure 4: MM PCG-BT and example generated levels.

The SMB and MM BTs both produced levels in only a lin-
ear manner due to the original games lacking loops and pro-
gressing linearly, necessitating a linear generation approach.
PCG-BTs can also generate levels that progress in multiple
directions and have paths that loop around, as we’ll see next.

Dungeons

Having demonstrated BTs for platformer level genera-
tion using a segment-by-segment generative approach, we
wanted to test BTs for generating levels for other genres.
Thus, we implemented BTs for generating layouts for dun-
geon crawlers such as The Legend of Zelda. We developed
a BT to model a simple layout generation algorithm which
begins by placing a starting room that is closed on all sides.
Then in each iteration, a random closed side is chosen. If
there is no room next to it, a room is placed there with all
its sides closed. The two rooms are then connected by set-
ting the adjoining edge to be open. This is repeated until the
desired number of rooms has been generated. To visualize
the generated dungeons, we extracted the 11x16 rooms from
Zelda levels in the VGLC. Similar to MM, we tagged each
room with the direction in which they had doors. For each
room generated by the BT, we placed a sampled Zelda room
with doors in the corresponding directions. The BT and sam-
ple dungeons are shown in Figure 5. Unlike previously, the
BT here generates one room per tick and executes a loop of
ticks until all rooms have been generated. For this, we store
a flag on the blackboard to indicate if the start room has been
generated, initialized to false. During the first tick, the start
Selector executes, generates the starting room and disables
the flag so that on subsequent ticks this check fails. Note that



Figure 5: Dungeon Layout PCG-BT and example generated
dungeons and Metroid level

the SMB and MM BTs could also have been implemented
using a loop of ticks and the dungeon could have been im-
plemented using a single tick, demonstrating the different
ways in which BTs could be used for level generation.

Generic and Blending

In addition to modeling specific games, we envisioned craft-
ing game-agnostic BTs which could be instantiated using
levels from different games. This only requires that sec-
tions generated by the control flow nodes and segments pro-
duced by the action nodes are compatible across multiple
games. We have seen two such BTs. While the SMB BT
is not generic since it utilizes Mario-specific design pat-
terns, the MM BT can generate levels for any platformer
consisting of vertical and horizontal sections and segments
with openings in 4 directions. Similarly, the dungeon layout
BT could be used for any game with interconnected seg-
ments. Metroid, being a platformer and having a sprawling
interconnected game world, satisfies both criteria. Similar to
MM, we used 15x16 segments from full Metroid levels from
the VGLC. Segments were similarly labeled based on di-
rectionality with slight modifications where needed (e.g. no
Metroid segment had just Down and Right openings without

Up also being open, thus we mapped the DR action node to
sample UDR in this case). An example Metroid level gener-
ated using the dungeon BT is shown in Figure 5. A generic
BT adapted from the prior MM BT is shown in Figure 6
along with an example MM level and Metroid level, both
generated using it. Finally, given that subtrees corresponding
to different level sections could be combined to form larger
trees for generating whole levels, one could combine a tree
for generating levels of one game with a tree for generating
levels of another to produce a more complex tree that can
generate levels from different games taken together i.e., per-
form game blending (Gow and Corneli 2015). Such a blend-
ing BT is shown in Figure 7. It consists of an initial Sequence
for generating an SMB section, followed by a Selector for
generating either a horizontal or a vertical MM section, fol-
lowed by a Sequence for generating a horizontal and then a
vertical section of Metroid. Playability is maintained simi-
lar to MM action nodes i.e. by checking adjoining edges of
successive segments and resampling if no path exists.

Discussion and Future Directions

Our results suggest that BTs can be repurposed for mod-
eling design agents and yield modular and interpretable
generators—modular in that subtrees generating level sec-
tions can be recombined with other subtrees to produce a
variety of BTs and interpretable in that BTs indicate why
and how the generators produce the levels they do. Note that
we are not proposing a specific algorithm or BT implemen-
tation but simply the use of BTs for modeling procedural
level generators rather than NPCs, and demonstrating that
it is feasible to do so via our examples. The implementa-
tions of the underlying condition and action nodes are ag-
nostic to the PCGBT framework, e.g. all selection decisions
in our examples are made at random. As mentioned before,
these decisions could also be made based on designer prefer-
ences or player behavior at runtime. Decoupling the PCGBT
framework from underlying implementations enables the ap-
proach to generalize to multiple design styles/preferences
without enforcing any one. The primary utility of PCG-BTs
would be to let designers combine sub-levels or handmade
content into whole levels in a modular, explainable manner.
Overall, we believe this initial exploratory foray into defin-
ing and using PCG-BTs holds promise for several interesting
future directions.

Dynamic Level Generation Similar to traditional BTs,
PCG-BTs could be reactive and produce dynamic generators
where different level sections are generated by choosing dif-
ferent branches based on runtime conditions. Moreover, by
having conditions tied to player behavior, we could generate
different levels and gameplay experiences specifically tai-
lored towards different player types and difficulty levels.

Combining with traditional BTs Modeling both design
and gameplay agents via the same formalism opens up many
generative possibilities. We could develop hybrid BTs with
subtrees for both agent Al and level generation. Execution
of a level generation branch could be controlled based on if
a game playing branch succeeds or fails. Prior work (Cooper
and Sarkar 2020) looked at using pathfinding agents for



Figure 7: Blend PCG-BT and example generated levels blending Super Mario Bros., Mega Man and Metroid.

level repair. Such agents in BT form could be combined
with PCG-BTs. There are also several directions using evo-
lutionary algorithms. Could we meaningfully crossover and
mutate such hybrid trees? Would we find commonalities
between BT agents able to play certain PCG-BTs? Could
we co-evolve game playing BTs and PCG-BTs in an open-
ended manner to discover new types of agents and games?

RL and Evolution We used hand-crafted PCG-BTs but in
the future they could be generated via learning and evolu-
tion. Prior work has used RL to learn BTs (Dey and Child
2013; Banerjee 2018) and could be leveraged for learning
agents capable of designing games, akin to PCGRL. Evolu-
tion has also been applied for evolving BTs modeling de-
sired behaviors (Jones et al. 2018; Neupane and Goodrich
2019), so we could evolve PCG-BTs modeling desired lev-
els. Both RL and evolution could be used by designers for
inferring BT structures from a set of exemplar levels.

General Game Design We showed that BTs can model
game-agnostic level generators which can be instantiated to
produce levels for different games and genres using the same
tree. Thus PCG-BTs are capable of general level generation
(Togelius and Yannakakis 2016), i.e. generating levels for
a number of different games. This could in turn enable dy-
namic game generation analogous to dynamic level gener-
ation, producing different games for different players. Fur-
ther, we could incorporate the blend BTs, and dynamically
switch different games in and out during gameplay. In the
future, it would be interesting to develop such generalized
PCG-BTs. For e.g., could we cluster similar PCG-BTs into
forests of BTs capable of generating similar types of games?

Designers and Practitioners PCG techniques, particu-
larly those involving evolution, ML (Summerville et al.
2018) and RL have not been widely adopted in commercial
games. Jacob, Devlin, and Hofmann (2020) point out that

practitioners seek methods that afford authorial control, are
readable and easy to interpret and do not require research
expertise. Since BTs are a very well-known Al technique
among designers, PCG-BTs could be a more accessible gen-
erative approach to those outside of research circles.

Conclusion

We introduced PCGBT, i.e., the use of behavior trees for
procedural content generation, and demonstrated its appli-
cation in several games and use-cases. While we did not
perform playability evaluations on generated levels, we note
that the building blocks of our levels are taken directly
from the original games and thus segments themselves are
playable. For dungeons, the layout algorithm guarantees that
the dungeon is traversable from one room to another. Of
course, if our action nodes explicitly generated the segments
from scratch, playability evaluations of those would be ne-
cessitated. Since we focused on investigating the feasibil-
ity of this approach, we leave such considerations of overall
playability of levels for future work. Moreover, in addition
to the directions discussed previously, in the future, we want
to develop a GUl/interactive application to enable designers
to create and combine their own PCG-BTs as well as con-
duct a user study to examine PCGBT-generated levels in a
dynamic, reactive context.
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