
Controllable Level Blending between Games using Variational Autoencoders

Anurag Sarkar,1 Zhihan Yang2 and Seth Cooper1
1Northeastern University, Boston, Massachusetts, USA

2Carleton College, Northfield, Minnesota, USA
sarkar.an@husky.neu.edu, yangz2@carleton.edu, se.cooper@northeastern.edu

Abstract

Previous work explored blending levels from existing games
to create levels for a new game that mixes properties of the
original games. In this paper, we use Variational Autoen-
coders (VAEs) for improving upon such techniques. VAEs are
artificial neural networks that learn and use latent representa-
tions of datasets to generate novel outputs. We train a VAE
on level data from Super Mario Bros. and Kid Icarus, en-
abling it to capture the latent space spanning both games. We
then use this space to generate level segments that combine
properties of levels from both games. Moreover, by applying
evolutionary search in the latent space, we evolve level seg-
ments satisfying specific constraints. We argue that these af-
fordances make the VAE-based approach especially suitable
for co-creative level design and compare its performance with
similar generative models like the GAN and the VAE-GAN.

Introduction
Procedural content generation (PCG) refers to automated
generation of content for games and has been a popular area
of research (Shaker, Togelius, and Nelson 2016) with meth-
ods for PCG using a variety of techniques, most commonly
search (Togelius et al. 2011), grammars (Smith, White-
head, and Mateas 2011) and constraint solving (Smith and
Mateas 2011). A newly emerging subfield of PCG research
is PCGML or PCG via Machine Learning (Summerville et
al. 2017), referring to procedurally generating content via
models trained on existing game data using machine learn-
ing. This allows models to capture properties of games that
designers may want to emulate while also helping alleviate
the burden of hand-crafting rules and reducing designer bias.

Recently, Sarkar and Cooper (2018) showed that LSTMs
trained on levels from Super Mario Bros. and Kid Icarus can
generate levels whose properties are a mix of those of levels
from the original games. This work leveraged past successes
in ML-based level generation (Summerville et al. 2015)
and blending (Guzdial and Riedl 2016b) to move towards
implementing a co-creative system similar to the VGDL-
based game blending framework proposed by Gow and Cor-
neli (2015) wherein a novel game is generated by combin-
ing the mechanics and aesthetics of two existing games.

Copyright c© 2019 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC
BY 4.0).

While successful in demonstrating the feasibility of generat-
ing blended levels using models trained on data from sepa-
rate games, the LSTM approach did blending by taking turns
in generating segments of the two games. This allows gener-
ation of blended levels but not more fine-grained blending of
elements from different games within a level segment. Also,
though it lets designers specify the proportion of each game
to blend in the levels, it does not let them control different
level properties in the blending and generation process.

To address these issues, we use Variational Autoencoders
(VAEs) to blend levels from different games and show that
by capturing the latent design space across both games, the
VAE enables more holistic blending of level properties, al-
lows for the generation of level segments that optimize cer-
tain functions and satisfy specific properties, and is more
conducive to co-creative level design. Specifically, we train
a VAE on one level each from Super Mario Bros. and Kid
Icarus which thus learns a latent representation spanning
both games. Using evolutionary search in this space lets us
evolve level segments satisfying different designer-specified
constraints as well as the proportions of Super Mario Bros.
and Kid Icarus elements present within them. Due to the
nature of the VAE, designers can also specify the segments
they want to blend or generate variations of without having
to use the latent representation as in past related work using
Generative Adversarial Networks (GANs) (Volz et al. 2018).

This work contributes an exploratory study on using
VAEs to blend levels from different games. We present an
evaluation of the approach that suggests that VAEs are better
suited to blending levels across games than GANs and con-
clude with a discussion on how VAEs can inform co-creative
level design in the future.

Background and Related Work
PCG via Machine Learning Recent years have seen sig-
nificant research on 2D level generation using machine
learning. N-gram models (Dahlskog, Togelius, and Nel-
son 2014), Markov models (Snodgrass and Ontañón 2014),
PGMs (Guzdial and Riedl 2016a) and LSTMs (Summerville
and Mateas 2016) have all been used to generate levels for
Super Mario Bros. while Bayes Nets have been used for gen-
erating dungeons for The Legend of Zelda (Summerville and
Mateas 2015). Similar to our work, Snodgrass and Ontañón
(2017) use levels from multiple games, including the two

that we used, but differ in using Markov chains rather than
VAEs and in focusing on translating levels from one game
to another rather than blending levels. Most closely related
to our work is that of Jain et al. (2016) and Volz et al. (2018)
in using autoencoders and GANs respectively to create Su-
per Mario Bros. levels. The latter also applied Covariance
Matrix Adaptation to evolve levels with certain properties
within the GAN’s latent space. We similarly train a VAE
and evolve levels in its latent space but unlike GANs, which
only accept latent space vectors as inputs, VAEs can accept
as inputs both level segments as well as latent vectors, thus
offering more control over generation.

Level and Game Blending Past work has focused on
blending levels from the same game, specifically Super
Mario Bros., by applying principles of conceptual blending
(Fauconnier and Turner 1998). Guzdial and Riedl (2016b)
blended different Mario level generation models while also
exploring different blending strategies for generating levels
(Guzdial and Riedl 2017). Beyond levels, Gow and Cor-
neli (2015) proposed a framework for blending entire games.
They created a new game Frolda by combining the VGDL
(Schaul 2014) specifications of Frogger and Zelda. To move
towards using ML-based level blending to implement a
similar framework but not restricted to VGDL, Sarkar and
Cooper (2018) used LSTMs to blend together levels from
Super Mario Bros. and Kid Icarus. In this paper, we build
on this latter work by replacing LSTMs with VAEs. This
enables more holistic level blending and the ability to use
the VAE’s learned latent space to interpolate between levels
and evolve new ones based on various properties. Similar to
blending games, recent work by Guzdial and Riedl (2018)
looked into generating new games by recombining existing
ones using a process termed conceptual expansion.

Co-Creative Generative Systems Co-creative generative
systems (Yannakakis, Liapis, and Alexopoulos 2014) let hu-
man designers collaborate with procedural generators, en-
abling designers to guide generation towards desired con-
tent. Such systems have been used for generating plat-
former levels (Smith, Whitehead, and Mateas 2011), game
maps (Liapis, Yannakakis, and Togelius 2013), Cut-the-
Rope levels (Shaker, Shaker, and Togelius 2013) and dun-
geons (Baldwin et al. 2017). Within PCGML, the Morai
Maker (Guzdial et al. 2017) lets users design Mario levels
by collaborating with AI agents based on generative models
from past PCGML work. We envision that VAEs can be the
basis for similar tools that help designers in making levels
that blend properties of multiple games.

Variational Autoencoders Autoencoders (Hinton and
Salakhutdinov 2006) are neural nets that learn lower-
dimensional representations of data using an unsupervised
approach. They consist of an encoder which converts the
data into this representation (i.e. the latent space) and a
decoder which reconstructs the original data from it. Vari-
ational autoencoders (VAEs) (Kingma and Welling 2013)
augment vanilla autoencoders by making the latent space
model a probability distribution which allows learning a
continuous latent space thus enabling random sampling of

Tile Type VGLC Integer Sprite
SMB Ground X 0
SMB Breakable S 1
SMB Background - 2
SMB Full Question ? 3
SMB Empty Question Q 4
SMB Enemy E 5
SMB Pipe Top Left < 6
SMB Pipe Top Right > 7
SMB Pipe Bottom Left [8
SMB Pipe Bottom Right] 9
SMB Coin o 10
KI Platform T 11
KI Movable Platform M 12
KI Door D 13
KI Ground # 14
KI Hazard H 15
KI Background - 16

Table 1: Encodings used for level representation

outputs as well as interpolation, similar to GANs. Thus a
level generation approach as in MarioGAN (Volz et al. 2018)
could be implemented using VAEs. Similar to how Mari-
oGAN searched the latent space to find desired levels, the
same may be possible with VAEs. Like our approach, Guz-
dial et al. (2018) used autoencoders for generation, focusing
on generating level structures conforming to specified de-
sign patterns. Their work differs in generating Mario-only
structures and using a standard autoencoder while we gener-
ate segments spanning both Mario and Icarus using a VAE.

Latent Variable Evolution via CMA-ES Latent variable
evolution (Bontrager et al. 2018) refers to using evolution-
ary search to find desired vectors in latent space. MarioGAN
uses Covariance Matrix Adaptation Evolutionary Strategy
(CMA-ES) (Hansen, Muller, and Koumoutsakos 2003) to
find desirable level segments within the latent space of the
trained GAN. This allows generating segments that opti-
mize specific features such as Tile Pattern KL-Divergence
as introduced by Lucas and Volz (2019). We similarly used
CMA-ES to evolve vectors in the latent space of our VAE.

Approach
For the remainder of the paper, we refer to Super Mario
Bros. as SMB and Kid Icarus as KI.

Dataset Level data was taken from the Video Game Level
Corpus (VGLC)1 (Summerville et al. 2016) and consisted
of data from one level (Level 1-1) of SMB and and one
level (Level 5) of KI. We chose the former since it was used
in MarioGAN and the latter as it contains all the KI ele-
ments which is not true for all KI levels in the corpus. We

1https://github.com/TheVGLC/TheVGLC

Figure 1: SMB Proportion vs Density/Difficulty/Non-Linearity for 10000 segments generated by VAE, GAN and VAE-GAN.

used only 1 level per game similar to MarioGAN and also
due to the exploratory nature of our work, hoping for quick,
promising results and leaving more optimal results derived
from a larger corpus for future work. Regarding the choice
of games, our ultimate goal is blending games from differ-
ent genres. To do so, it is worth first blending games from
the same genre that differ in significant ways. Thus, we use
SMB and KI since both are platformers but differ in orien-
tation. Each level in the VGLC is a 2D character array with
each tile represented by a specific character. For training,
each tile type was encoded first using an integer, as given
in Table 1, and then using a One-Hot encoding. To create
training samples, we used a 16x16 window slid horizontally
across the SMB level and vertically across the KI level, thus
training the VAE on 16x16 level segments from both games.
We chose this window to account for the difference in orien-
tation between the games. Hence, the VAE learned to gener-
ate 16x16 level segments rather than entire levels. This may
be more conducive to a co-creative approach as it lets de-
signers query the VAE for segments they can assemble as
desired rather than the VAE constructing a level with a fixed
rule for combining generated segments. In MarioGAN, this
is not an issue since all segments are from SMB so a full
level can be formed by placing them one after another. It is
not obvious how to do so when segments themselves may
be a blend of SMB (horizonatal) and KI (vertical) gameplay.
Using the sliding window, we obtained 187 SMB and 191
KI training segments, for a total of 378 training segments.

Training The VAE encoder had 2 strided-convolutional
layers using batchnorm and LeakyReLU activation. This fed
into a 64-dimensional bottleneck (i.e. hidden) layer which
fed into the decoder. The decoder had 1 non-strided followed
by 2 strided-convolutional layers and also used batchnorm
but used ReLU instead of LeakyReLU. We used the Adam
optimizer with a learning rate of 0.001 and binary cross-
entropy as the loss function. For evaluation, we compared
the VAE with a GAN and a VAE-GAN. The GAN discrim-
inator and generator had similar architectures to the VAE
encoder and decoder respectively. The VAE-GAN’s encoder
and decoder had the same architecture as those of the VAE
while its discriminator had the same architecture as that of
the GAN. For all models, we used PyTorch (Paszke et al.
2017) and trained on the 2 levels for 10000 epochs based on
MarioGAN using 5000 epochs to train on 1 level.

Generation The trained VAE generates 16x16 segments
within the combined SMB-KI latent level design space. Gen-

eration involves feeding a 64-dimensional latent vector into
the VAE’s decoder which outputs a 17x16x16 one-hot en-
coded array representing the segment. Using argmax along
the one-hot encoded dimension gives the 16x16 segment in
the integer encoding as in Table 1. This can then be con-
verted and stored as an image using tiles from the original
games. Thus, like MarioGAN, the VAE can generate seg-
ments by using random latent vectors or by using CMA to
evolve vectors that optimize given fitness functions, thereby
satisfying designer-specified constraints. Unlike GANs, the
VAE can also generate segments based on those supplied by
designers rather than just using latent vectors. This involves
feeding a segment encoded using the VGLC representation
into the VAE’s encoder which in turn encodes the segment
into the learned 64-dimensional latent vector representation.
A new segment can then be obtained from this vector us-
ing the decoder. Further, one can input two segments, get
their corresponding vectors using the encoder and interpo-
late between them to generate new segments that blend the
input segments. Due to these added capabilities, we argue
that VAEs are more suited than GANs for co-creative level
design systems based on blending different games as it al-
lows designers more explicit control in defining the inputs
to the system. Designers may find it more useful to blend
or interpolate between segments they define or know the ap-
pearance of rather than do so by evolving latent vectors.

Evaluation
To evaluate our approach, we used the following metrics:

• Density - the number of solid tiles in a 16x16 segment. A
segment with density of 100% has all 256 tiles as solid.

• Difficulty - the number of enemies plus hazards in a 16x16
segment. Based on the dimensions, we defined a segment
with 100% difficulty to have 16 total enemies and hazards.

• Non-Linearity - measures how well segment topology fits
to a line. It is the mean squared error of running linear
regression on the highest point of each of the 16 columns
of a segment. A zero value indicates perfectly horizontal
or linear topology.

• SMB Proportion - the percentage of non-background
SMB tiles in a segment. A segment with 100% SMB Pro-
portion has only SMB tiles while 0% has only KI tiles.

These metrics are tile-based properties meant to visu-
alize the generator’s expressive range (Smith and White-
head 2010) rather than encapsulate formal notions of den-
sity, difficulty or non-linearity. Additionally, we compared

Figure 2: Proportions of SMB and KI elements in segments generated by VAE, GAN and VAE-GAN respectively

Figure 3: Corner plots for VAE, GAN and VAE-GAN respectively depicting generated (green), SMB (red) and KI (blue) levels.

the VAE’s generative performance with that of similar gen-
erative models like the GAN and the VAE-GAN. While the
GAN cannot encode known levels and segments, it may of-
fer better generation and blending than the VAE in which
case using a hybrid model such as the VAE-GAN (Larsen et
al. 2016) that combines the benefits of both, may be best for
blending levels. Thus, we compared these models in terms of
their accuracy in evolving desired segments by using CMA-
ES to evolve 100 level segments with target values of 0%,
25%, 50%, 75% and 100% for each of Density, Difficulty,
Non-Linearity and SMB Proportion and compared the tar-
get values to the actual values of the evolved segments. Fur-
ther, we compared the models in terms of capturing the latent
space spanning both games. For this, we computed the above
metrics for segments generated from 10,000 latent vectors
drawn uniformly at random from a Gaussian distribution.

Results and Discussion
Figure 1 depicts the expressive range of the three models
in terms of Density, Difficulty, Non-Linearity and SMB Pro-
portion in generated segments. The VAE seems to be best at
generating segments whose elements are a mix of those from
either game while both the GAN and the VAE-GAN gener-
ate segments with mostly SMB or mostly KI elements as
evidenced by their plots being sparser in the middle than the
VAE plot. This is also suggested by Figure 2. Approximately
18% of VAE-generated segments have elements of both
games where as this drops to around 8% for GAN and 5% for
VAE-GAN. This implies that the VAE is better than the other
models at capturing the latent space spanning both games
as well as the space in between, thus making it the best
choice among the three for generating blended segments.
We also used corner plots (Foreman-Mackey 2016) to visu-
alize the models as shown in Figure 3. Such plots have been

used in past PCGML work (Summerville and Mateas 2016)
and visualize the output of a model with respect to multi-
ple metrics simultaneously. Based on these, VAE-generated
segments adhere more closely to training segments and the
space between segments from both games. While the in-
creased variance displayed by segments generated by the
GAN and VAE-GAN seems desirable for novelty, as we will
discuss, this is due to the segments over-generalizing and
ignoring the structures of training segments.

Results of testing the accuracy of evolving segments
based on properties are shown in Figure 4. Initially, the
GAN seems to perform best in terms of Density, Diffi-
culty and Non-Linearity, followed by the VAE and then the
VAE-GAN. It is worth noting though that the GAN does
better than the VAE only for 100% Density and 75% and
100% Difficulty. However such values ignore the structures
in training levels since actual SMB and KI segments would
have neither 100% solid tiles nor 16 enemies and hazards.
This suggests that the VAE’s latent space better captures
the nature of the training data than the GAN’s latent space,
thereby struggling to find segments with close to 100% Den-
sity while the GAN can do so more easily. It is possible that
the GAN wasn’t trained enough but since we used the same
training data, similar architectures and the same number of
epochs for both models, this is another benefit of the VAE as
it exhibits better performance with similar training.

In terms of blending desired SMB and KI proportions,
none of the models do particularly well in evolving segments
that are neither 100% KI nor 100% SMB. However, while
the VAE does well at least for 50%, the other two do much
worse. These results follow from the discussion on Figure
2 and suggest that, with similar training, the VAE learns
a latent space that is more representative of the game data
(based on Figure 4) while having more variation to enable

Figure 4: Accuracy of evolving level segments optimizing Density, Difficulty, Non-Linearity and SMB Proportion. Values are
the average of 100 evolved segments for each desired value. Results for VAE, GAN, VAE-GAN from left to right.

VA
E

G
A

N
VA

E
-G

A
N

0% 25% 50% 75% 100%

Figure 5: Evolved segments optimizing for Density.

VA
E

G
A

N
VA

E
-G

A
N

0% 25% 50% 75% 100%

Figure 6: Evolved segments optimizing for Difficulty.

better blending (based on Figures 1 and 2). Thus, in addition
to enabling the encoding of segments, VAEs seem to also be
better at generation than GANs in the context of level blend-
ing. Example evolved segments for each model for different
objectives are shown in Figures 5, 6, 7 and 8. While future
work should focus on improving the VAE architecture to bet-
ter evolve segments spanning all values for SMB Proportion,
overall, our findings suggest that VAEs are better suited to
blending levels from different games than GANs.

Application in Co-Creative Design
VAEs trained on levels from multiple games could inform
co-creative level design systems that let designers make lev-

VA
E

G
A

N
VA

E
-G

A
N

0% 25% 50% 75% 100%

Figure 7: Evolved segments optimizing for Non-Linearity.

VA
E

G
A

N
VA

E
-G

A
N

0% 25% 50% 75% 100%

Figure 8: Evolved segments optimizing SMB Proportion.

els by generating and blending level segments representative
of all games used for training via the following affordances:

Interpolation between games By encoding level seg-
ments into latent vectors, VAEs enable interpolation be-
tween vectors representing segments from different games
and generation of segments that lie between the latent space
of either game, thus having properties of both games i.e.
blended segments. For example, one could interpolate be-
tween an SMB segment and a KI segment as in Figure 9.

Alternative connections between segments Interpolating
between segments from the same level can generate alternate
connections between them. This can help designers edit ex-
isting levels by interpolating between two segments from the

Figure 9: Transitioning from SMB (left) to KI (right) by
interpolating between corresponding latent vectors.

Figure 10: Interpolating between segments of Mario 1-1
generates those not in the actual level as in the middle four.

level to generate new segments that can be combined to form
new links between the original two as in Figure 10.

Generating segments satisfying specific properties
Search within the VAE’s latent space can be used to
evolve vectors and thus level segments satisfying specific
properties. We saw Difficulty, Density and Non-Linearity,
but other optimizations are possible such as maximizing the
distribution of certain tiles as in Figure 11.

Generating segments with desired proportions of dif-
ferent games In addition to optimizing for tile-specific
properties, we can also optimize for desired proportions of
level elements from each game, as in Figure 8.

These affordances make VAEs suited to co-creative level de-
sign using latent spaces of multiple games. While GANs
can generate segments optimizing specific properties, they
do not offer the first two affordances as they only accept
latent vectors as input. Also, based on our results, VAEs
seem to be better at learning latent spaces spanning multi-
ple games. Moreover, while the LSTM approach can gen-
erate entire blended levels, it does not offer any affordance
except proportional blending between two games. Even so,
this was done by varying the number of segments from each
game rather than blending segments themselves. Currently,
the VAE is unable to generate whole blended levels. When
generating segments blending levels from games with dif-
ferent orientations, it is not obvious how to combine them.
The LSTM approach addressed this by training a classi-
fier on SMB and KI level sequences to determine if gen-
erated sequences were more SMB-like or KI-like, orienting
them accordingly. However, this is harder when segments
themselves are blended as in our case. While future work
should augment the VAE with entire level generation capa-
bilities, in a co-creative context, segments may offer design-
ers more fine-grained control over level design than whole
levels. They are likely to better affect level aesthetics by de-
ciding on the placement of generated segments instead of
using entire generated levels.

Limitations and Future Work
We trained a VAE on level data from Super Mario Bros. and
Kid Icarus and argued for its use as the basis for a co-creative

VA
E

G
A

N
VA

E
-G

A
N

? E T M D H

Figure 11: Evolved segments maximizing given tile type.

level design system that enables blending of levels from both
games. We discuss limitations and future work below.

Playability The main limitation of this work is that it ig-
nores playability. This may be less problematic when gener-
ating segments rather than whole levels as the designer can
place segments such that the level is more playable. How-
ever, they should ideally be able to query the generator for
segments that maintain playability relative to those already
generated. This ties into the issue of blended levels pos-
sibly requiring new or blended mechanics to be playable.
Investigating methods for blending mechanics is necessary
future work and could leverage past work in mechanic
generation. (Zook and Riedl 2014; Khalifa et al. 2017;
Smith and Mateas 2010; Guzdial, Li, and Riedl 2017).

Vector Math in Level Design Space Besides interpo-
lation, other vector operations like addition and subtrac-
tion can be used in the latent space to generate segments.
Such vector arithmetic could enable feature transfer between
games by for example adding a vector representing a game 1
feature to a vector representing a game 2 segment. Such in-
teractions would require disentanglement i.e. different latent
space dimensions encoding different level features. VAEs
capable of learning such disentangled representations are
called disentangled or β-VAEs (Higgins et al. 2017) and
should be explored for this purpose in the future.

Level Design Tool In this work, we focused on validat-
ing the VAE approach to level blending. The next step is to
implement the co-creative level design tool described in the
previous section, using the VAE as its foundation.

Multiple Games and Genres Finally, future work could
consider blended level design spaces spanning more than
two games as well as multiple genres. How would one blend
a platformer with an action-adventure game? What games,
genres, mechanics and levels exist within the latent space
between Mario and Zelda, for example?

References
Baldwin, A.; Dahlskog, S.; Font, J. M.; and Holmberg, J.
2017. Mixed-initiative procedural generation of dungeons
using game design patterns. In 2017 IEEE Conference on
Computational Intelligence and Games (CIG).

Bontrager, P.; Roy, A.; Togelius, J.; and Ross, A. 2018.
Deepmasterprints: Generating masterprints for dictionary
attacks via latent variable evolution. In 2018 IEEE 9th In-
ternational Conference on Biometrics Theory, Applications
and Systems (BTAS).
Dahlskog, S.; Togelius, J.; and Nelson, M. 2014. Linear
levels through N-grams. In Proceedings of the 18th Inter-
national Academic MindTrek Conference: Media Business,
Management, Content & Services, 200–206.
Fauconnier, G., and Turner, M. 1998. Conceptual integration
networks. Cognitive Science 22(2):133–187.
Foreman-Mackey, D. 2016. corner.py: Scatterplot matrices
in Python. The Journal of Open Source Software 24.
Gow, J., and Corneli, J. 2015. Towards generating novel
games using conceptual blending. In Proceedings of the
Eleventh Artificial Intelligence and Interactive Digital En-
tertainment Conference.
Guzdial, M., and Riedl, M. 2016a. Game level generation
from gameplay videos. In Proceedings of the Twelfth Artifi-
cial Intelligence and Interactive Digital Entertainment Con-
ference.
Guzdial, M., and Riedl, M. 2016b. Learning to blend com-
puter game levels. In Proceedings of the Seventh Interna-
tional Conference on Computational Creativity.
Guzdial, M., and Riedl, M. 2017. Combinatorial creativity
for procedural content generation via machine learning. In
Proceedings of the First Knowledge Extraction from Games
Workshop.
Guzdial, M., and Riedl, M. 2018. Automated game design
via conceptual expansion. In Proceedings of the Fourteenth
Artificial Intelligence and Interactive Digital Entertainment
Conference.
Guzdial, M.; Chen, J.; Chen, S.-Y.; and Riedl, M. 2017. A
general level design editor for co-creative level design. In
Proceedings of the AIIDE Workshop on Experimental AI in
Games.
Guzdial, M.; Reno, J.; Chen, J.; Smith, G.; and Riedl, M.
2018. Explainable PCGML via game design patterns. In
Proceedings of the AIIDE Workshop on Experimental AI in
Games.
Guzdial, M.; Li, B.; and Riedl, M. 2017. Game engine
learning from video. In IJCAI.
Hansen, N.; Muller, S. D.; and Koumoutsakos, P. 2003. Re-
ducing the time complexity of the derandomized evolution
strategy with covariance matrix adaptation (CMA-ES). Evo-
lutionary Computation 11(1):1–18.
Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.; Glorot, X.;
Botvinick, M.; and Lerchner, A. 2017. beta-vae: Learning
basic visual concepts with a constrained variational frame-
work. In International Conference on Learning Representa-
tions.
Hinton, G., and Salakhutdinov, R. 2006. Reducing the
dimensionality of data with neural networks. Science
313(5786):504–507.
Jain, R.; Isaksen, A.; Holmgård, C.; and Togelius, J. 2016.
Autoencoders for level generation, repair and recognition. In

Proceedings of the ICCC Workshop on Computational Cre-
ativity and Games.
Khalifa, A.; Green, M.; Perez-Liebana, D.; and Togelius,
J. 2017. General video game rule generation. In 2017
IEEE Conference on Computational Intelligence and Games
(CIG).
Kingma, D., and Welling, M. 2013. Auto-encoding varia-
tional Bayes. In The 2nd International Conference on Learn-
ing Representations (ICLR).
Larsen, A.; Sonderby, S.; Larochelle, H.; and Winther, O.
2016. Autoencoding beyond pixels using a learned similar-
ity metric. In Proceedings of the 33rd International Confer-
ence on Machine Learning.
Liapis, A.; Yannakakis, G.; and Togelius, J. 2013. Sentient
Sketchbook: Computer-aided game level authoring. In Pro-
ceedings of the 8th International Conference on the Founda-
tions of Digital Games.
Lucas, S. M., and Volz, V. 2019. Tile pattern kl-divergence
for analysing and evolving game levels. In Genetic and Evo-
lutionary Computation Conference (GECCO).
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer,
A. 2017. Automatic differentiation in PyTorch. In NIPS
Autodiff Workshop.
Sarkar, A., and Cooper, S. 2018. Blending levels from dif-
ferent games using LSTMs. In Proceedings of the AIIDE
Workshop on Experimental AI in Games.
Schaul, T. 2014. An extensible description language for
video games. IEEE Transactions on Computational Intelli-
gence and AI in Games 6(4):325–331.
Shaker, N.; Shaker, M.; and Togelius, J. 2013. Ropossum:
An authoring tool for designing, optimizing and solving cut
the rope levels. In Proceedings of the Ninth Artificial Intel-
ligence and Interactive Digital Entertainment Conference.
Shaker, N.; Togelius, J.; and Nelson, M. 2016. Procedural
Content Generation in Games. Springer International Pub-
lishing.
Smith, A., and Mateas, M. 2010. Variations forever: Flexibly
generating rulesets from a sculptable design space of mini-
games. In Proceedings of the 2010 IEEE Conference on
Computational Intelligence and Games (CIG).
Smith, A., and Mateas, M. 2011. Answer set programming
for procedural content generation. IEEE Transactions on
Computational Intelligence and AI in Games 3(3):187–200.
Smith, G., and Whitehead, J. 2010. Analyzing the expres-
sive range of a level generator. In Proceedings of the 2010
Workshop on Procedural Content Generation in Games.
Smith, G.; Whitehead, J.; and Mateas, M. 2011. Tanagra:
Reactive planning and constraint solving for mixed-initiative
level design. IEEE Transactions on Computational Intelli-
gence and AI in Games 3(3):201–215.
Snodgrass, S., and Ontañón, S. 2014. Experiments in map
generation using Markov chains. In Proceedings of the
9th International Conference on the Foundations of Digital
Games.

Snodgrass, S., and Ontañón, S. 2017. An approach to
domain transfer in procedural content generation of two-
dimensional videogame levels. In Proceedings of the Twelfth
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE-17).
Summerville, A., and Mateas, M. 2015. Sampling Hyrule:
Sampling probabilistic machine learning for level genera-
tion. In Proceedings of the Eleventh Artificial Intelligence
and Interactive Digital Conference.
Summerville, A., and Mateas, M. 2016. Super Mario as a
string: Platformer level generation via LSTMs. In Proceed-
ings of the 1st International Joint Conference on DiGRA and
FDG.
Summerville, A.; Behrooz, M.; Mateas, M.; and Jhala, A.
2015. The learning of Zelda: Data-driven learning of level
topology. In Proceedings of the 10th International Confer-
ence on the Foundations of Digital Games.
Summerville, A. J.; Snodgrass, S.; Mateas, M.; and
Ontañón, S. 2016. The VGLC: The Video Game Level
Corpus. Proceedings of the 7th Workshop on Procedural
Content Generation.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård,
C.; Hoover, A.; Isaksen, A.; Nealen, A.; and Togelius, J.
2017. Procedural content generation via machine learning
(PCGML). In Foundations of Digital Games Conference.
Togelius, J.; Yannakakis, G.; Stanley, K.; and Browne, C.
2011. Search-based procedural content generation: A tax-
onomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games 3(3):172–186.
Volz, V.; Schrum, J.; Liu, J.; Lucas, S.; Smith, A.; and Risi,
S. 2018. Evolving mario levels in the latent space of a deep
convolutional generative adversarial network. In Proceed-
ings of the Genetic and Evolutionary Computation Confer-
ence.
Yannakakis, G.; Liapis, A.; and Alexopoulos, C. 2014.
Mixed-initiative co-creativity. In Foundations of Digital
Games Conference.
Zook, A., and Riedl, M. 2014. Automatic game design via
mechanic generation. In Twenty-Eighth AAAI Conference
on Artificial Intelligence.

