
Controllable and Coherent Level Generation: A Two-Pronged Approach

Justin Mott, Saujas Nandi, Luke Zeller
University of North Carolina at Chapel Hill

justinmmott@gmail.com, saujas.nandi@gmail.com, rlukezeller@gmail.com

Abstract

Procedurally generating high-quality content is an impor-
tant problem in the design and development of video games.
A key objective of procedural level generation is controlla-
bility: the ability to generate novel levels with a predeter-
mined goal, such as maximizing difficulty. Previous work has
achieved this for platformer games using deep-learning and
evolutionary methods, but such methods often lead to invalid
or asymmetric structures within the generated levels. On the
other hand, generative approaches using LSTMs and Markov
chains have succeeded in preserving local coherence but suf-
fer from limited controllability. In this paper, we introduce
a framework for generating controllable and locally coherent
levels in platformer games. Our framework extends a prior
GAN and evolutionary strategy-based approach with LSTM
Recurrent Neural Networks and hyperparameter optimiza-
tion. We use sequence transformation via a LSTM to improve
aesthetic coherency, while tuning fitness function hyperpa-
rameters for specific objectives and measuring overall level
quality through human evaluation. To verify our approach,
we create levels for Super Mario Bros intended to be novel
and challenging to expert players. We demonstrate that the
framework is able to successfully generate such levels in a
controllable manner, while also resolving invalid and unaes-
thetic local structures.

Introduction
Efficiently creating high-quality levels is a key challenge in
the video game industry. Video game development can take
thousands of man-hours to ensure that the player’s experi-
ence is seamless and that the player may immerse them-
selves in the video game world. In today’s video game mar-
ket, where annual releases of video game are common, de-
velopers face significant time constraints that can limit their
ability to build creative and complex levels. As a result, Pro-
cedural Content Generation (PCG), which enables the gen-
eration of levels with limited human involvement (Goodfel-
low et al. 2014a), has gained notable attention in both aca-
demic and professional spheres (Shaker, Togelius, and Nel-
son 2016).

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Traditionally, PCG has required the involvement of do-
main experts when designing generators for a specific video
game (Volkovas et al. 2019). The compositional methods
and the metaheuristic search algorithms described in (To-
gelius, Justinussen, and Hartzen 2012) and (Togelius et al.
2011) are examples of strategies that require expert knowl-
edge to design the parameter space that these methods will
search over. It is difficult for businesses to justify exploring
these techniques, as they are specific to a title and still take
many man-hours to develop. However, PCG Machine Learn-
ing (PCGML), which involves applying machine learning
techniques to PCG, has been shown to significantly reduce
the amount of time spent designing game-specific systems
(Summerville et al. 2018). As a result, PCGML techniques
can lead to the development of automated game design sys-
tems which are generalizable and can be reapplied to a vari-
ety of similar games. Unfortunately, applications of PCGML
methods suffer from a lack of controllability, the ability to
generate novel levels with a prescribed goal, and coherence,
the structural and aesthetic quality of a level. Due to their
generalizability, PCGML techniques and frameworks are of-
ten difficult to configure for meaningful goals or structures
within a given game. Achieving coherence is difficult be-
cause ML methods are inherently approximate and often
noisy, preferring solutions that live near a global maximum
to precise local maxima. For this reason, PCG with such
techniques will sometimes result in asymmetric and unaes-
thetic local structures that appear out of place.

In this paper we present a framework to address the afore-
mentioned issues facing current PCGML methods. Consid-
ered generically, our system assists with the procedural gen-
eration of aesthetically coherent levels which can be con-
trolled for specific, predefined goals such as maximizing
difficulty or number of solution paths. We accomplish this
using a two-pronged approach: controllability is achieved
with a fitness function and human evaluation of level qual-
ity, and coherence is reintroduced through the employment
of a Long Short Term Memory Recurrent Neural Network
(LSTM) (Hochreiter and Schmidhuber 1997). Our paper fo-
cuses on Super Mario Bros (SMB1), which has been the sub-
ject of PCGML research for several years; in our work, we
aimed to create levels that would prove to be challenging,

even for expert level players.

Background
As machine learning techniques are constantly improving,
a portion of these advancements have propagated through-
out PCG research (Smith 2014). Over the last few years,
there has been a broad effort in the PCG research commu-
nity to develop new PCGML techniques; from GANs (Park
et al. 2019) to LSTMs (Summerville and Mateas 2016) to
co-creative approaches (Guzdial, Liao, and Riedl 2018). Our
work extends and generalizes techniques such as these; in
this section, we present an overview of the background rele-
vant to our contributions.

Controllability
As previously mentioned, we define controllability as the
ability to generate novel levels with prescribed goals. Con-
trollability is often recognized as a key feature of PCG
techniques and frameworks, and has been the subject of
much prior work. To improve controllability our frame-
work builds upon the PCGML methods used by (Volz et
al. 2018), who successfully employed Generative Adversar-
ial Networks (GANs) (Goodfellow et al. 2014b) to gener-
ate novel levels and Covariance Matrix Adaptation Evolu-
tion Strategy (CMA-ES) (Hansen, Müller, and Koumout-
sakos 2003) to control features of generated levels.

GANs GANs are a pair of convolutional neural networks,
consisting of a generator and a discriminator, which together
compete in an adversarial manner. During the training pro-
cess, the generator attempts to create data representative of a
given training set, while the discriminator attempts to distin-
guish this input from real training data. As mentioned above,
Volz et al. employed GANs to assist with Super Mario Bros.
content generation. During training, they had the generator
produces playable SMB1 levels while the discriminator was
trained on these generated levels along with segments from
SMB1 level 1-1. In their implementation, they utilized a py-
torch model of a Wasserstein GAN (Arjovsky, Chintala, and
Bottou 2017). WGANs are a variation on Deep Convolu-
tional GANs (Radford, Metz, and Chintala 2015) that effec-
tively minimize the difference between the model’s distribu-
tion and the actual distribution. They then used the results
of the GAN in the next stage of their level generation, the
CMA-ES evolution process.

CMA-ES CMA-ES is an evolutionary strategy that oper-
ates on latent vectors, which are hidden (i.e. latent) represen-
tations of the data under consideration. As in Volz et al. the
latent vectors serve as input to the generator network, which
transforms them into a level for which fitness can be cal-
culated. The CMA algorithm takes advantage of statistical
properties of these vectors to generate and mutate popula-
tions while optimizing for a given fitness function by iden-
tifying clusters of latent vectors that have the desired prop-
erties. Using the fitness values, the algorithm creates a new
generation by combining the highest fitness examples from
the current generation with carefully constructed but non-
deterministic mutations. Although the evolution process in-
troduces several random mutations in each level, many of

these mutations could have no effect on the fitness function;
for example, adding blocks that cannot be reached as seen
in Figure 1, or deleting tiles contained in staircases as seen
in Figure 2. Despite many mutations resulting in no prac-
tical difference in level fitness, CMA-ES has proven to be
effective in improving the population fitness over time.

In order to generate a new population, the fitness of ev-
ery level in the current population must be calculated. Volz
et al. used an AI agent to complete levels and calculated
their fitness from metrics recorded during the AI’s execu-
tion. The AI agent used was the A* agent developed by
Robin Baumgarten for the 2009 Mario AI competition (To-
gelius, Karakovskiy, and Baumgarten 2010). Their primary
metric for fitness is derived directly from the number of
jumps performed by the AI agent in completing a level. For
our purposes, this approach is limited in its capacity to iden-
tify specific features within a level and thus lacks sufficient
controllability.

Figure 1: Unreachable Blocks Figure 2: Staircase with Gaps

Level Representation Our initial level generation pro-
cess (consisting of GAN level generation and CMA-ES tun-
ing/optimization) is based closely on the workflows used by
Volz et al. in their previously mentioned PCG work. We de-
scribe this workflow here. To begin, Mario levels are col-
lected from the Video Game Level Corpus (Summerville et
al. 2016) which contains a collection of text-based represen-
tations of such levels. The tiles are represented with ASCII
characters and converted into integers as shown in Table 1.
The integers are then one-hot encoded before being passed
into the WGAN for training and testing. During training and
generation, levels are divided into segments of fixed and pre-
determined length and height. Several such segments can be
merged to produce levels of the same length as those in the
original game.

Tile ASCII ID
Ground X 0

Breakable S 1
Air - 2

Question Block ? 3
Empty Question Block Q 4

Goomba E 5
Top-left Pipe < 6

Top-right Pipe > 7
Left Pipe [8

Right Pipe] 9

Table 1: Encoding of Mario Levels

After training the WGAN, level generation may begin. In
this procedure, randomly selected latent vectors are passed

to the WGAN generator which returns level segments of
a predetermined size. These segments are then used as an
initial population for the CMA-ES evolution process. The
evolution algorithm then proceeds in a standard manner,
running its evolutionary strategy according to a given fitness
function; this fitness function will take each new population
of latent vectors and pass them back to the generator
network, then performs an evaluation on the resulting level.
After multiple iterations of this process, the single latent
vector with the best fitness is returned and saved. Note that
each latent vector corresponds only to a small segment
of a full-length level; we can then repeat this process as
many times as necessary and stitch together the resulting
segments to create a full level.

Coherence
While strong controllability is arguably the most important
factor in determining the overall utility of a PCG frame-
work, local coherence in the generated levels is an integral
aspect of practical PCG. Locally, generated levels should be
structured in a manner consistent with real levels and should
possess a similar amount of symmetry (or lack thereof). In
particular, any visual properties or constraints held by all
human-authored levels should also be held (or approximated
as well as possible) by any generated level. Examples where
this is relevant in SMB include restrictions to valid pipe
structures and proper ground tile/stair placement and shape.

LSTMs LSTMs are a type of Recurrent Neural Network
comprised of carefully-designed memory blocks. Within
each block is a memory cell with self-connections storing
its temporal state as well as its gates. The gates are multi-
plicative units that control the flow of information. Within
each memory cell there is an input gate, a forget gate, and
an output gate. The input and output gates moderate how
a given activation will affect the memory cell as well as
the network as a whole, while the forget gate moderates
the flow of the internal state of the cell into its own in-
put (Sak, Senior, and Beaufays 2014). LSTMs are effective
at learning local and semi-local structures and patterns ap-
parent within training data (Karpathy, Johnson, and Fei-Fei
2015) and have been used to generate new levels by train-
ing on existing levels from the VGLC (Summerville and
Mateas 2016). This method of PCGML by Summerville et
al. achieves good local coherence, but has limited controlla-
bility. The LSTM is able to accurately reproduce structures
found within the training data, creating objects such as stairs
and pipes correctly. However, because it is trained on levels
from the VGLC and not parameterized in a meaningful way,
controlling the output requires the creation of more tailored
training data. This undermines the utility of PCG, because it
requires additional levels to be hand-crafted in order to add
additional features.

Approach
We build on the WGAN and CMA-ES based approach of
Volz et al. in three key ways. First, we introduce a novel
fitness function for CMA-ES, which is well correlated with

level difficulty. Next, we describe and carry out a comple-
mentary human-evaluation process in order to optimize the
hyperparameters in our fitness function without requiring or
assuming knowledge of the game being played. Lastly, we
use a LSTM to improve the coherency of the generated level.
We will describe our approach by covering the controlla-
bility and coherency components of our framework in two
parts. For a more general overview of our framework refer
to Figure 3.

Controllability
Frame Windows In order to optimize for challenging lev-
els, we needed to identify a metric that corresponded to a
level’s difficulty. We utilized a measure of difficulty based
on the number of frames that an action is feasible for a player
to perform, referred to as a frame window, where a frame
is one video frame of the game. We determine the frame
window for each action via the following process: First we
record the actions an AI agent makes in order to complete
a level. Next, we perturb the beginning of each action, one
frame at a time, and check if the level is still completable
with this modified set of actions. The frame window of an
action is the number of perturbations that still results in the
level being completed. Actions with small frame windows
are more difficult for human players to execute successfully
than actions with larger frame windows, as smaller frame
windows force players to react more quickly in order to pass
the level. In SMB1, pressing the jump key is the main action
that players use, as most levels can be completed without
changing directions. For our implementation, we shifted one
jump at a time without modifying the remaining jumps. For
each jump j, we calculated the number of frames Fj that the
start of j could be shifted to, while still completing the level.
We defined the difficulty of a level that was completed by an
AI agent with a set of jumps J as:

D =
1∑

j∈J

Fj

Fitness Function When creating our fitness function, we
needed to take two separate components of difficulty into ac-
count, the local difficulty of specific actions, and the global
difficulty of completing a level as a whole. The notion of
difficulty described above aggregates the local difficulty of
a level, but fails to account for the global difficulty. To com-
pensate for this, we also used a global measure of level dif-
ficulty based on the fraction of times that an AI agent was
successfully able to complete the level. The A* agent used
in our implementation was non-deterministic, and in prac-
tice was able to complete difficult levels less than 30% of
the time and easy ones 80% or more of the time. As a re-
sult, we were able to run this A* agent on a level multiple
times and treat the fraction of successful runs as a measure
of the global difficulty of the level. However, if an AI agent
with high variance is not available for some game, one can
substitute multiple AI agents with varying degrees of abil-
ity to achieve the same result by using the fraction of agents
that successfully complete a level as a measure of the global
difficulty.

Figure 3: Level Generation Pipeline

One problem with attempting to maximize the difficulty
of generated levels is that infeasible levels (i.e. those which
are impossible to complete), despite being the most difficult
levels, are typically unwanted as they are not interesting to
play and would lead to player frustration. To account for this,
we penalize such levels by assigning them a negative fitness
value corresponding to the length of the level that can be
completed. More formally, let f be the maximum fraction
of the level that any AI agent has traversed. If f < 1, which
typically only happens when the level cannot be completed,
the level is assigned a fitness of f − 1, which rewards levels
that have a larger playable area while also ensuring that in-
completable levels are always less fit than completable lev-
els.

We used hyperparameters, k1 . . . k3 ∈ R as weights for
the various components of our fitness function. The fitness
value F of a level L with an aggregated local difficulty of
` and a global difficulty of g, and where f is the greatest
fraction of the level that was completed by any AI agent:

F =

{
k1 · `+ k2 · g iff = 1.0

k3 · (f − 1) iff < 1.0

Because the CMA-ES implementation we used was de-
signed to find the minima of the given fitness function, in
practice we negate the result of F when calculating fitness.

Human Evaluation To find the optimal values of the hy-
perparameters mentioned above, we used a fixed step-size
random search on the 3D hyperparameter search space,
based on the algorithm introduced by (Rastrigin 1963). To
evaluate a hyperparameter H = (x, y, z), we first created a
fitness function by fixing the hyperparameters for the func-
tion F with k1 = x, k2 = y, k3 = z. We then used GAN
generation and CMA-ES with this fitness function to gen-
erate a challenging level with the properties determined by
the specific hyperparameter values. At this point, the gen-
erated level was played by a human evaluator with prior
expert-level speedrunning experience. The evaluator rated
each level on the enjoyability of the playing experience; this
rating was then used as the fitness for H . We chose to re-
strict the ratings to lie between 1 and 15 inclusive, but this
restriction is a practical matter and does not affect the re-
sults of the random search. For clarity and consistency, we
interpreted the following intervals as follows:

[1, 5): Boring or unplayable level
Would not play again

[5, 10): Decent level with some good qualities
Would play again

[10, 15]: Excellent level with many highlights
Would play repeatedly

Table 2: Human Evaluation Rating Interpretation

The random search process is as follows for a predeter-
mined step-size d and a population size p: to initialize the
random search, we generate a population of p random hy-
perparameters and evaluate them. Now for each iteration of
the random search, we choose the best hyperparameter in
our population as our candidate solution, and randomly gen-
erate p − 1 new hyperparameters that are distance d from
this candidate. These p − 1 new hyperparameters form the
new population along with the candidate solution. After hu-
man evaluating the new hyperparameters, we repeat the pro-
cess until we generate levels that are consistently interesting.
Augmenting our CMA-ES evolution with human evaluation
provides a systematic way to create challenging yet fun lev-
els without requiring significant prior knowledge about any
particular game.

Coherence
As discussed earlier, the CMA-ES process will sporadically
create incoherent local structures, as exemplified by Figures
7 and 8. We chose to use a LSTM to help repair these lo-
cal inconsistencies and improve the level’s coherency. While
local Markov-chain methods have demonstrated success at
replicating pipes and other local structures, they fail to ef-
fectively capture the semi-local aesthetic structure of stairs
as shown in (Snodgrass and Ontan 2017) and (Snodgrass
and Ontañón 2014). On the other hand, LSTMs have been
shown to successfully maintain local and semi-local coher-
ence for level generation (Summerville and Mateas 2016).
The LSTM that we use was implemented with pytorch and
has hidden states with 256 dimensions and an embedding
dimension size of 256.

We created our training data by perturbing the levels given
by the VGLC. We narrowed down the levels in the VGLC to
16 levels by choosing all of the above-ground SMB1 levels,
as opposed to sky and underground levels, since the GAN

Figure 4: Level 1-1

Figure 5: Level 1-1 Perturbed

Figure 6: Level 1-1 Fixed

was trained on an above-ground level and there are vast dif-
ferences between the three level types. By perturbing this
set of 16 levels and training the LSTM to convert the per-
turbed levels back to the original, we were able to teach the
LSTM to fix many of the common sources of local inco-
herencies: broken pipes, misaligned staircases, and random
ground tiles. The perturbations were done on a random sub-
set of the following tile types: pipe tiles were replaced with
other tile types, staircase tiles were either replaced by an
empty tile or shifted horizontally, and air tiles were replaced
with ground tiles. These perturbations can be found by com-
paring Figures 4 and 5. Many of the pipes have been altered
in some way, with only 1 pipe left untouched, while ground
tiles have been added throughout the level and the staircases
more closely resemble a bridge.

Figure 7: Broken Pipe Figure 8: Random Pipe Tile

Controllability
With the training data created, we then flatten each level into
a sequence by iterating through its columns. We chose this
representation so that adjacent tiles are separated by at most
15 tiles, rather than the 200 tile spacing we would get if
we had used a row-based representation. We then train the
LSTM on the sequence-representations of the original and
perturbed levels.

Results
We stored the human evaluation rating of the candidate so-
lution in each iteration of the hyperparameter optimization
stage of our framework, with the results shown in Figure 10.

Figure 9: Average population fitness per CMA-ES Iteration.
Lower values are better.

Figure 10: Best Level Rating for each Iteration of the Hy-
perparameter Optimization Random Search

The random search proved to be effective as we were able to
find hyperparameters that earned a rating of 13 points out of
15 in a small number of iterations. For these results, we used
a population size of p = 3 and a step size of d = 5. In Figure

Figure 11: Generated Level

Figure 12: Generated Level Fixed

11, we can see an example of a challenging generated level.
This level is completable but still requires several difficult
jumps, including a jump that involves landing on exactly
one tile, and another that requires the player to jump nine
tiles (the maximum possible jump length is ten tiles). How-
ever, this generated level has some aesthetic flaws, as can
be seen in the incorrect pipes and random floating blocks.
These problems are mostly fixed by the LSTM.

Coherence
After training the LSTM, we generated a testing data set
using the same types of perturbations as when creating the
training data set, and achieved a testing accuracy of 99.05%.
We find this accuracy by running the LSTM on the testing
data set and then calculating the following

Test Accuracy =
of Tiles correct
Total # of Tiles

The LSTM’s performance can be observed by comparing
Figures 4, 5, and 6. It is clear that the LSTM has modified the
perturbed level and its result is not far from the original level.
All the blocks have been fixed and the staircase at the end
now closely resembles the original except for the block at the
far right. The staircases in the middle were not completely
fixed, but they are significantly closer to the original level
than what is given in the perturbed level.

To check the LSTMs effectiveness in our pipeline, we also
observed how it performed on levels that were generated by
the GAN + CMA-ES process, such as the level shown in
Figure 11. When compared to the LSTM-processed level,
shown in Figure 12, we can see that the LSTM was able to
fix multiple pipes and some inconsistencies in the ground
tiles. Crucially, locations without inconsistencies, such as
the isolated breakable tiles, are left unchanged, which is key
to preserving the completability and difficulty of the level.

Limitations and Future Work
Given the success of autoencoders in repair/denoising appli-
cations (Jain et al. 2016), we would like to experiment with
them, as well as Seq2Seq methods (Vaswani et al. 2017), as
alternatives to LSTMs for level repair. This will allow the
model to make more informed decisions about a particular

tile as it will have information about surrounding (and par-
ticularly future) tiles. Given more time, we would also like to
take levels generated by the CMA-ES and fix them by hand
for the purpose of training the model on completely repre-
sentative data. Furthermore, we found that Infinite Mario
Bros. has non-deterministic behavior in its physics engine;
this affects the results of our fitness function calculation, as
the feasibility of a perturbed action set may be incorrectly
judged. The work by Volz et al. and (Snodgrass and Ontañón
2016) also explore level representation-based objectives, in
which a level must meet various criteria (e.g. a specific num-
ber of enemies or gaps), the values of which are determined
via prior calculation. These target values, effectively addi-
tional hyperparameters, could instead be chosen via human
evaluation, which has the benefit of being reproducible as
well as customizable for the target audience; the ideal hy-
perparameters for an expert level player could vastly differ
from those of a beginner. Lastly, the human evaluation of
hyperparameters could be distributed across multiple play-
ers to avoid overfitting a single person’s preferences as well
as reducing the overall bias and amount of work necessary
per-person to achieve usable results.

Conclusion
We have presented a framework that allows for the creation
of a PCG model enabling controllability via a generic fit-
ness function and human evaluation, while also maintain-
ing coherence via LSTMs. We believe our framework can
be naturally generalized to other similar AI-solvable plat-
former games, and with appropriate modifications, that it
may be further generalizable to many games solvable by
an AI agent, so long as levels can be naturally represented
as text and linearized. While our frame-window based ap-
proach might not extend naturally to games in other genres,
the success-ratio metric for global difficulty is more broadly
applicable. In any case, different fitness functions can be de-
fined based on the individual characteristics of the game un-
der consideration.

References
Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasser-
stein generative adversarial networks. In International Con-
ference on Machine Learning, 214–223.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014a. Generative adversarial nets. In Ghahramani, Z.;
Welling, M.; Cortes, C.; Lawrence, N. D.; and Weinberger,
K. Q., eds., Advances in Neural Information Processing Sys-
tems 27. Curran Associates, Inc. 2672–2680.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014b. Generative adversarial nets. In Advances in neural
information processing systems, 2672–2680.
Guzdial, M.; Liao, N.; and Riedl, M. 2018. Co-
creative level design via machine learning. arXiv preprint
arXiv:1809.09420.
Hansen, N.; Müller, S. D.; and Koumoutsakos, P. 2003. Re-
ducing the time complexity of the derandomized evolution
strategy with covariance matrix adaptation (cma-es). Evolu-
tionary computation 11(1):1–18.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9:1735–80.
Jain, R.; Isaksen, A.; Holmgård, C.; and Togelius, J. 2016.
Autoencoders for level generation, repair, and recognition.
Karpathy, A.; Johnson, J.; and Fei-Fei, L. 2015. Visualiz-
ing and understanding recurrent networks. arXiv preprint
arXiv:1506.02078.
Park, K.; Mott, B.; Min, W.; Boyer, K.; Wiebe, E.; and
Lester, J. 2019. Generating educational game levels with
multistep deep convolutional generative adversarial net-
works. In Proceedings of the IEEE Conference on Games.
Radford, A.; Metz, L.; and Chintala, S. 2015. Unsupervised
representation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434.
Rastrigin, L. A. 1963. The convergence of the random
search method in the extremal control of a many parameter
system. Automation and Remote Control 24(10):13371342.
Sak, H.; Senior, A.; and Beaufays, F. 2014. Long short-term
memory recurrent neural network architectures for large
scale acoustic modeling. In Fifteenth annual conference of
the international speech communication association.
Shaker, N.; Togelius, J.; and Nelson, M. J. 2016. Procedural
content generation in games. Springer.
Smith, G. 2014. Understanding procedural content genera-
tion: a design-centric analysis of the role of pcg in games. In
Proceedings of the 32nd annual ACM conference on Human
factors in computing systems, 917–926. ACM.
Snodgrass, S., and Ontañón, S. 2016. Controllable proce-
dural content generation via constrained multi-dimensional
markov chain sampling. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, IJ-
CAI’16, 780–786. AAAI Press.
Snodgrass, S., and Ontañón, S. 2014. Experiments in map
generation using markov chains.
Snodgrass, S., and Ontan, S. 2017. Learning to generate
video game maps using markov models. IEEE Transactions
on Computational Intelligence and AI in Games 9(4):410–
422.

Summerville, A., and Mateas, M. 2016. Super mario as a
string: Platformer level generation via lstms. arXiv preprint
arXiv:1603.00930.
Summerville, A. J.; Snodgrass, S.; Mateas, M.; and Villar,
S. O. 2016. The VGLC: the video game level corpus. CoRR
abs/1606.07487.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård, C.;
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J.
2018. Procedural content generation via machine learning
(pcgml). IEEE Transactions on Games 10(3):257–270.
Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2011. Search-based procedural content generation: A
taxonomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games 3(3):172–186.
Togelius, J.; Justinussen, T.; and Hartzen, A. 2012. Com-
positional procedural content generation. In Proceedings of
the The third workshop on Procedural Content Generation
in Games, 16. ACM.
Togelius, J.; Karakovskiy, S.; and Baumgarten, R. 2010. The
2009 mario ai competition. In IEEE Congress on Evolution-
ary Computation, 1–8. IEEE.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. In Advances in neural information
processing systems, 5998–6008.
Volkovas, R.; Fairbank, M.; Woodward, J.; and Lucas,
S. 2019. Mek: Mechanics prototyping tool for 2d
tile-based turn-based deterministic games. arXiv preprint
arXiv:1904.03540.
Volz, V.; Schrum, J.; Liu, J.; Lucas, S. M.; Smith, A. M.;
and Risi, S. 2018. Evolving mario levels in the latent space
of a deep convolutional generative adversarial network. In
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2018). New York, NY, USA: ACM.

