
A Structured Analysis of Experience Management Techniques

Giulio Mori,1 David Thue,1,2 and Stephan Schiffel1

1Department of Computer Science 2School of Information Technology
Reykjavik University Carleton University
Menntavegur 1, 101 1125 Colonel By Drive
Reykjavik, Iceland Ottawa, ON, K1S 5B6, Canada

giulio17@ru.is, david.thue@carleton.ca, stephans@ru.is

Abstract
As a field of study, Experience Management spans a set of
technology that is becoming increasingly relevant in appli-
cations that aim to improve the experiences of their users.
Given the youth of the field, however, few attempts have been
made to identify and discuss the common elements of systems
that manage user experiences as they occur. In this paper, we
consider a subset of existing AI experience managers in the
context of a shared conceptual framework. We offer directly
comparable summaries of the managers that we discuss, and
we highlight how some of them use different technologies to
perform similar tasks. While many experience managers re-
main undiscussed, we nonetheless demonstrate that distinct,
well-defined components exist across a diverse set of man-
agers, and that a modular method for building new managers
might well be within reach.

1 Introduction
Recent years have seen an increasing demand for software
systems that can improve the experiences of their users, in
the contexts of both applications and video games. Such sys-
tems are designed to adapt to each user, providing a tailored
experience based on the person’s behaviour within the appli-
cation or game. In an educational game, for example, such
an adaptive system might adjust the pacing or order of the
lessons that it presents, to increase the student’s chances of
remembering more later. Many names have been used to de-
scribe the task of influencing a system using AI techniques,
but we prefer the term experience management (Riedl et al.
2008) because it generally describes the task of modifying a
user’s experience of an interactive system.

To tackle experience management problems, many AI
managers have been created using a variety of AI tech-
niques, including planning, curve fitting, filtering, and more.
In spite of all this work, however, the field has lacked a criti-
cal component for ensuring methodical progress: a way to
meaningfully compare the inner workings of different AI
managers. In this paper, we claim that such comparisons can
be made in the context of an existing conceptual framework,
and we support this claim by analyzing and comparing the
inner workings of four diverse managers.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2 Representing Experience Management
In the context of game-related research, researchers have
often referred to experience management (EM) as drama
management (DM). One of the first definitions can be
traced back to Laurel (1986). She designed an AI sys-
tem called the PLAYWRIGHT which, utilizing a designer-
provided knowledge base and the history of the interactive
environment, would generate a temporally ordered sequence
that describes the next moments of the interactive simula-
tion. Weyhrauch (1997) developed Laurel’s work by design-
ing an AI experience manager named MOE. With this work,
he extended the PLAYWRIGHT’s capabilities with two key
features. First, he represented DM as an optimization prob-
lem, where the manager determines the quality of any given
narrative using one or more measures or estimates, such as
the player’s level of engagement. Second, he included the
idea that a manager might want to change not only the im-
mediate course of the story, but also its behaviour at some
potential future states. Weyhrauch considered DM similarly
to game-tree search: a player performs an action within the
environment, and the drama manager responds with some
moves by performing a game-tree-like search to maximize
an evaluation function. The evaluation function was the en-
coding of the authors’ belief of what an excellent interac-
tive experience looks like, and it provided the drama man-
ager with objectives to achieve. Weyhrauch’s work led to
a representation of EM called Search-Based Drama Man-
agement (SBDM) (Nelson et al. 2006; Nelson and Mateas
2008). More generally, drama management usually entails
an omniscient AI system that monitors the fictional world
and influences what happens next, following authorial con-
straints (Roberts and Isbell 2008; Yu and Riedl 2013).

Other possible ways to represent EM can be found in prior
work on dynamic difficulty adjustment (Hunicke and Chap-
man 2004), adaptive game mechanics (Lindley and Senner-
sten 2006), player-adaptive games (Ha et al. 2011), proce-
dural game adaptation (Thue and Bulitko 2012), and gen-
eralized experience management (Thue 2015). “Experience
management” can be seen as the hypernym of these terms,
since it generally involves an AI system that manages user
experiences. For a comparison of different EM representa-
tions, see recent work by Thue and Bulitko (2018).



3 Conceptual Framework
Our goal in this paper is to provide an overview and dis-
cussion of several computational techniques that have been
studied and used in the context of EM research. To structure
our discussion, we will use Thue’s (2015) “Generalized Ex-
perience Management” (GEM) framework, as its generality
was demonstrated across several different managers.

GEM defines experience management as the task of op-
timizing a player’s experience in an interactive environment
by adjusting that environment while the player is experienc-
ing it. GEM is a framework in the sense that it combines sev-
eral conventional notions of EM into a well-defined formal
structure, providing both a base and a collection of concep-
tual “building blocks”.1

The base of GEM can be summarized as follows. Given an
interactive environment (e.g., a computer game), a player’s
experience (called a trajectory) is a rotating sequence of the
game’s states (which the player perceives), actions (which
the player performs), and potentially new variations of the
game’s mechanics (which determine future states). A game-
play history is a trajectory that starts from the beginning of
the experience and ends at the most recent action the player
performed. GEM allows an experience manager to modify a
game’s mechanics, which makes it simpler to represent some
managers using the GEM framework (Thue 2015).

Decision 
Constraint 
Function

(…)

Gameplay
History Expected

Quality

Expected
Quality

Rollout 
Function

and
Objective 
Function

Maximize
Expected

Quality

Candidate
Game

Mechanics

Candidate
Game

Mechanics

(…)

Best Game
Mechanics

1

3

2

Figure 1: A schematic diagram of a GEM manager’s policy.
Numbers identify GEM’s building blocks. Rounded boxes
show functions, italics show data, and arrows show function
inputs and outputs. The flow of game mechanics is high-
lighted with thicker arrows. See Figure 2 for more details.

As sketched in Figure 1, a GEM manager’s policy works
to maximize the expected quality of the player’s experience
by assessing several candidates for the game’s mechanics
and choosing the best one. Figure 2 shows the assessment
step in more detail, in which the potential futures that could
result from each given candidate for the game’s mechanics
are used to compute an expected quality. Quality is highest
when the experience’s effect on the player is closest to what
the manager’s designers intended.

GEM’s building blocks form the basis of our forthcoming
discussion, and we review their definitions briefly here:

1To keep focus on the relevant concepts of GEM, we will not
use GEM’s mathematical definitions in this work.

Objective 
Function

Rollout
Function

Gameplay
History Potential

Futures

Candidate
Game

Mechanics
Expected 
Quality of
Candidate

Potential
Game
State

Estimated
Player
Action

Estimated
Player 
Policy

Candidate
Game

Mechanics

4

3

2

Figure 2: A schematic of how GEM’s rollout function, ob-
jective function, and estimated player policy are used to as-
sess candidate game mechanics (see Figure 1 for context).

• Block #1 - Decision Constraint Function: This allows
the manager’s designer(s) to prevent it from consider-
ing different options for changing a game’s mechanics.
For example, Left 4 Dead’s AI DIRECTOR was con-
strained to choose between only two versions of the
game’s mechanics (spawning more and more zombies,
and not) (Valve Corporation 2008; Booth 2009). Decision
constraints can reduce the computational requirements of
EM by decreasing the number of possible experiences that
the manager needs to analyze.

• Block #2 - Objective Function: When more than one ver-
sion of the game’s mechanics are available for the man-
ager to consider, the manager might consult a designer-
provided objective function. This function estimates the
quality of a given trajectory, and can thus be used by
the manager to estimate the results of its modifications.
For example, Façade’s drama manager estimated how
closely the player’s current experience of dramatic tension
was following an author-defined curve over time (Mateas
2002; Mateas and Stern 2005).

• Block #3 - Rollout Function: To obtain more useful es-
timates from an available objective function, a manager
might use a rollout function to estimate potential fu-
tures of the player’s experience (for one or many steps).
Weyhrauch (1997) illustrated this block with the drama
manager MOE, which aimed to build a tree of possible fu-
tures to consider when selecting its next dramatic move.

• Block #4 - Estimated Player Policy: To increase the reli-
ability of an available rollout function, the manager might
use an estimated player policy to estimate which action(s)
the player might perform next, given their prior gameplay
history. An example of this block can be found in a study
by Min et al. (2016), where they attempted to model how
players would form and pursue new goals based on their
prior experiences in the game.

• Block #5 - Feature Vector: Given a trajectory of a
player’s prior (or potential future) experience in the game,
it is common for managers to extract higher-level infor-
mation that can aid in their reasoning process. A fea-
ture vector is a collection of functions, each of which
is responsible for extracting one piece of information
from a given trajectory. For example, Barber and Ku-



denko (2007) used the player’s gameplay history to es-
timate several features in the form of a player model, in-
cluding the player’s selfishness and faithfulness.
Figures 1 and 2 show schematic diagrams of the GEM

framework in terms of how a GEM manager’s policy might
operate. Given a gameplay history as input (Figure 1), the
policy first uses the decision constraint function (Block #1)
to obtain a set of possible candidates for game mechanics.
Next, each candidate is sent to the rollout (#3) and objective
(#2) functions for assessment, along with the gameplay his-
tory (Figure 2). Given a gameplay history and a candidate
for the game’s mechanics, the rollout function generates a
set of potential futures; it uses the estimated player policy
(#4) to estimate subsequent player actions, and the candi-
date game mechanics (now as a function, rather than data)
to compute subsequent game states. Alongside the player’s
gameplay history, the set of potential futures is assessed by
the objective function (#2) to calculate the expected quality
that will result from choosing the given candidate game me-
chanics. If a manager is created without an estimated player
policy, then the rollout function will be limited to producing
potential futures that only extend one state past the given
gameplay history. If a manager is created without a rollout
function, then the objective function will estimate the can-
didate’s expected quality using only the gameplay history.
After obtaining an expected quality for each candidate game
mechanics (Figure 1), the manager chooses a candidate that
maximizes the expected quality and applies it to the game.

Block #5 (a feature vector) is left out of the figures to
simplify their presentation. In practice, for any function that
accepts a trajectory (such as a gameplay history or a poten-
tial future) as one of its inputs, a feature vector can be used
when computing the function’s result.

All of GEM’s building blocks are complementary, and
they can be used to categorize the techniques that various
researchers have developed in pursuit of better experience
managers. We do so in the sections that follow.

4 Managers and Techniques
In our review of the literature, we have found several dif-
ferent techniques that have been used to address specific
challenges in one or more of GEM’s building blocks. We
have also found several experience managers that have com-
bined some of the blocks. We begin by summarizing the
techniques used by each manager in turn (Section 4), and
then follow by discussing their similarities and differences
in the context of each of GEM’s blocks (Section 5).

Façade’s Drama Manager. We begin with Mateas and
Stern’s (2002; 2005) work on Façade, an interactive drama
that simulates being on stage with two live actors who are
driven to cause tense situations to arise. During an experi-
ence in Façade, an AI manager dynamically determines a se-
quence of dramatic situations (called “beats”) between two
virtual actors and the player. Before execution, the designer
provides an estimate of how much tension each beat will add
to the story once executed, and they also provide a desired
curve of tension versus time. Whenever the manager gets
to choose a subsequent beat, the set of available candidates

are first restricted by preconditions that designers defined for
each beat. Since each beat defines an interactive segment of
gameplay, choosing between them can be modeled as chang-
ing a game’s mechanics (Thue 2015). Façade’s beat precon-
ditions are thus an example of a decision constraint func-
tion (Block #1). Façade’s manager chooses between beats
to minimize the distance between the given curve and an es-
timate of the amount of tension that is currently in the story;
the inverse of this distance defines Façade’s notion of qual-
ity, and estimating it is an example of using an objective
function (Block #2). The estimate of the story’s current ten-
sion level is computed from the sequence of beats that have
occurred thus far (i.e., the game’s history), and it is thus an
example of a feature (Block #5). Façade’s manager uses no
estimate of the player’s current policy (Block #4), but its
consideration of potential future beats can be well thought
of as the computation of a rollout function (Block #3).

Narrative Mediation in Mimesis. Riedl, Saretto, and
Young (2003) described a technique to manage the interac-
tion between a player and virtual actors, toward advancing
author-given objectives without the player noticing. In par-
ticular, they aimed to detect and respond to unplanned user
actions (a process called narrative mediation) within Mime-
sis (Young 2001), an architecture for intelligent interactive
narrative worlds. Mimesis used an AI planner to generate
narrative plans comprising the actions that the player and
the actors should or would perform.

Before each play session, the experience manager ana-
lyzed the causal structure of the narrative plan to find oppor-
tunities for any exceptions to arise (due to player actions).
For each exception, it produced a new plan to recover from
it while preserving the goals of the original story. Generat-
ing a new plan in this way is an example of a rollout function
(Block #3), as it examines potential futures of the game.

To allow plans to be generated, one must create a planning
domain, which restricts the set of plans that can be found by
assigning logical preconditions to each of the actions that
could become part of a plan. Creating such a domain is one
way to specify a decision constraint function (Block #1),
since a plan’s execution is analogous to the execution of a
particular version of a game’s mechanics. Riedl, Saretto, and
Young also defined decision constraints in another way: for
each exceptional player action, a generated plan was com-
pared to a set of alternative, pre-authored ways to respond to
the exceptional player action. This pre-authoring is an exam-
ple of using decision constraints because each response was
implemented as a small variation to the game’s mechanics
(e.g., causing a gun to misfire instead of shoot).

The comparison between the plan and the pre-authored
alternatives was performed using a function that estimated
the quality of the plan and each alternative (i.e., an objec-
tive function; Block #2). Although the manager considered
possible player actions in its rollouts, its search was exhaus-
tive rather than guided by any estimates of what the player
would do. Thus it did not use an estimated player policy
(Block #4). The authors do not describe any features (Block
#5) that they may have used, for example, to compute their
manager’s objective function.



Decision
Constraint Func. Objective Function Rollout

Function
Estimated

Player Policy
Feature
Vector

Manager Quality Block #1 Block #2 Block #3 Block #4 Block #5

Façade’s
Drama Manager

Managed
Tension

Preconditions
on Events

Minimize distance
between estimated
value and given curve.

Consider
beats
just-in-time.

N/A
Computed from
annotations
on beats.

Narrative
Mediation
in Mimesis

Good Story
Structure

Planning Domain
& Hand-authored
Alternatives

Assess narrative
structure relative
to authored goals.

Consider
actions
in advance.

N/A N/A

The Personalized
Drama Manager

Expected
Enjoyment

Hand-authored
Alternatives

Estimate expected
value using
player model.

Consider
plot points
just-in-time.

Collaborative Filtering
(CF) based on player
preferences.

Computed using
Prefix-based CF.

Player-specific
Automated
Storytelling

Perceived
Agency Planning Domain

Maximize similarity
between content
and player model.

Consider
actions
just-in-time.

Assumes no action
other than observing.

Computed from
annotations
on actions.

Table 1: A summary of four experience managers, divided by GEM’s building blocks.

The Personalized Drama Manager. Yu and Riedl (2015)
built an EM system that aimed to influence players into
choosing actions that would lead to a narrative experience
that would maximize their expected enjoyment, according
to their tastes and preferences. Their approach can be sum-
marized as follows. They began with a story graph in which
multiple player actions could lead to the same plot point2.
Next, the PERSONALIZED DRAMA MANAGER (PDM) built
a model of the player’s preferences over potential gameplay
trajectories using “prefix-based collaborative filtering” (Yu
and Riedl 2012); these preferences represent values of one
or more features (Block #5). The PDM used this model
in an objective function (Block #2) to estimate how much
the player would enjoy different potential experiences. The
PDM also built a model of the player’s preferences over dif-
ferent potential actions. It used this model to predict which
action the player would likely choose at each potential state
(Block #4), and to calculate the probability that the player
would reach an ending of the story. This consideration of po-
tential futures amounts to the use of a rollout function (Block
#3). To facilitate the future with the highest expected enjoy-
ment, the PDM altered the game’s mechanics to constrain
the set of actions that would be presented to the player. Its
choices for these constraints were determined by the given
story graph, which constitutes an example of a decision con-
straint function (Block #1).

Player-specific Automated Storytelling. The final man-
ager that we consider is Ramirez and Bulitko’s (2015) PAST
(Player-specific Automated Storytelling). PAST aimed to
perform narrative mediation similarly to Riedl, Saretto, and
Young (2003)’s work in Mimesis, but with addition of a
learned player model inspired by Thue et al.’s (2007) PAS-
SAGE. When the player performed an exceptional action,
PAST used a modified version of the AUTOMATED STORY
DIRECTOR’S planner (Riedl and Stern 2006) to generate a
new story plan that was tailored to the player model. Given
this plan, PAST then modified the game’s mechanics to
cause the plan to come to pass. PAST’s planning process

2Using Thue and Carstensdottir’s (2018) disambiguation, these
are character-focused plot points – sections of gameplay that po-
tentially involve both player and non-player actions.

can be viewed as an example of the manager policy shown
in Figure 1. First, based on the gameplay history, a hand-
made function was used to identify exceptional player ac-
tions and give PAST’s planner access to a planning domain
(Block #1), similarly to Riedl, Saretto, and Young (2003)’s
approach discussed above. This domain defined a set of pos-
sible plans including partial plans (i.e., those that did not
reach a game ending), which PAST explored as part of its
search through potential possible futures (Block #3). By ana-
lyzing partial potential futures with a heuristic function (i.e.,
an objective function; Block #2), PAST was able to priori-
tize its review of the remaining candidates, finding solutions
with acceptable quality in a smaller amount of time. Since
PAST’s player model could not predict the player’s actions,
its planning process used the simplifying assumption that the
player would perform no actions other than observing what
occurred (Block #4). The player model itself, however, was
made of five features (Block #5) that estimated the player’s
inclinations toward playing in different styles (e.g., fighting
or conversing). PAST’s heuristic function was based on that
of PASSAGE (Thue et al. 2007), which sought to maximize
the similarity between the potential future’s supported play
styles and values in the player model.

Summary. Table 1 summarizes our analysis of the man-
agers that we considered in this section. For each manager,
we state its notion of quality along with the method that it
used (if any) to implement each of GEM’s building blocks.

5 Comparison via GEM Building Blocks
While the previous section introduced different experience
managers in the context of GEM’s building blocks, this sec-
tion considers the similarities and differences that can be
found by analyzing them block by block.

5.1 Decision Constraint Functions
The purpose of the decision constraint function is to simplify
the work of the manager by reducing the alternatives that are
available for it to choose following different player histories.
It also serves as a primary way for designers to encode their
intentions in the manager’s inputs, and it can include both



plot and not-plot constraints. From our analysis of the man-
agers in Section 4, we found two main techniques that can
be used to implement a decision constraint function:

• the designer hand-authors an explicit mapping between
histories and sets of candidates for the manager to con-
sider (as the Mimesis manager and the PDM received);

• the designer specifies a set of preconditions that can
be applied to each history to identify which candidates
should be considered; the Mimesis manager and PAST
received preconditions embedded in a planning domain,
while Façade’s DM had them attached to each story beat.

A general distinction can be drawn between the two tech-
niques. While the first specifies its candidates for new game
mechanics explicitly, the second does so implicitly – some
additional computation is required to obtain the required set
of candidates, such as evaluating one or more sets of pre-
conditions against the current history. Explicit specification
offers designers the benefit of having simple and direct con-
trol over what the manager might do, but it comes at a cost;
the designer’s required specification work increases linearly
with the number of opportunities that the manager receives
to influence the game. Meanwhile, implicit specification of-
fers at least the potential for a better work to output ratio, be-
cause the relationship between required work and manager
opportunities is super-linear3. For example, a single precon-
dition could be used to map an enormous number of histories
to a particular set of candidates for the game’s mechanics.
So long as the added complexity of producing preconditions
(versus explicit candidates) remains low, implicit specifica-
tion should offer more authorial leverage (Chen, Nelson, and
Mateas 2009) than explicit specification. Anecdotally, we
find it interesting that Riedl, Saretto, and Young’s (2003)
manager for Mimesis used both implicit and explicit tech-
niques, despite it being one of the earliest, narrative-focused
managers that were implemented.

5.2 Objective Functions
An objective function allows the designer to specify how the
manager should assess different candidate game mechan-
ics in relation to the gameplay history and its potential fu-
tures. By considering the managers discussed in Section 4,
we found several different ways to implement this block.

Mateas and Stern’s (2005)’s DM for Façade worked to
minimize the distance between a curve-over-time provided
by the designer and the DM’s estimate of the value that
was meant to track the curve. This value was related to
the story’s tension level in Façade, but the same method
could be used to specify and pursue curves for other as-
pects of the player’s experience (e.g., their level of surprise
over time (Bae and Young 2008)). Instead of considering
any direct effects on the player (like tension or surprise),
Riedl, Saretto, and Young’s (2003) manager for Mimesis as-
sessed potential player experiences from a structural per-
spective. This type of quality assessment follows closely

3We use “super-linear” to describe a function that eventually
grows faster than any linear one.

from Weyhrauch’s (1997) work on MOE, and can also be
found in work by Nelson et al. (2006).

Yu and Riedl’s (2015) PDM worked to compute the ex-
pected value of each of several potential futures, each of
which began with a set of customized actions that the PDM
would present to the player. To perform this computation,
it combined models of the player’s preferences and policy
to assess the quality and probability of each trajectory that
could be reached.

Ramirez and Bulitko’s (2015) PAST computed its objec-
tive function using a similarity metric driven by its model of
the player’s preferences, and this method has been used in
at least two other managers (Thue et al. 2007; 2011). Per-
haps more interestingly, PAST used its objective function
unlike any other manager that we considered in this work
– as a heuristic function inside a planner. Doing so allowed
it to optimize the order in which it considered the available
candidates for new mechanics. This method allowed PAST
to fully generate only a small number of plans, speeding its
search for one that best fit its current player.

When considering the previous methods together, two dis-
tinctions can be drawn. The first concerns the nature of
the data that the objective function considers: Does it con-
cern the experience’s structure (as the functions for Façade
and Mimesis did), or does it concern direct effects on the
player (as the functions for Facade, the PDM, and PAST
did)? Structural assessments offer a more convenient way
to perform evaluations, since running user studies with real
players might not be required (Nelson et al. 2006). Unfortu-
nately, the results of such studies suffer from difficulties with
generalization – especially when having a direct effect on
players is the manager’s ultimate goal. Nevertheless, at least
some structural characteristics have been shown to be well
associated with particular effects on players (Bae and Young
2008). The second distinction concerns the source of the
data that the objective function receives: Does it come from
authored annotations (like the data for Façade and PAST), or
does it come from a machine-learned source (like the data
for the PDM)? Authored annotations have similar benefits
and limitations as explicit decision constraints; they are sim-
ple to specify and offer absolute control, but their associated
authorial leverage is low. Using a machine-learned source of
data offers the potential advantage of transferring learned in-
formation between experiences or games, although the costs
might include less predictable manager behaviour and more
complicated troubleshooting. In general, objective functions
are often created with a specific notion of quality in mind.
However, even if a manager uses a particular technique to
pursue its defined quality, that same method (perhaps with
some adjustment) is likely to be useful in pursuing other no-
tions of quality as well.

5.3 Rollout Functions
The rollout function defines the mechanism that a manager
uses to examine potential futures of the player experience,
to improve the estimate of the objective function. When a
forward model of the environment is available, the manager
needs only to apply the effects of any given action to advance
the state of the world. However, this process can be compu-



tationally expensive, particularly if the manager’s lookahead
is long or the rollouts need to be generated in real time. The
managers that we analyzed in this paper offered a variety of
solutions to these problems, and they can be distinguished
along two orthogonal dimensions:
• the time at which the computation occurs (before the ex-

perience, online before it is needed, or just-in-time);
• the granularity with which each potential future is repre-

sented; player and character actions are highly granular,
while a collection of such actions is less granular, when it
can be considered as a unit.
In Façade, using the low granularity of a “beat” (a seg-

ment of gameplay covering various states and actions) al-
lowed the DM’s rollout function to be computed just-in-time
at a relatively low cost, since the total number of beats in any
story was not large.

Riedl, Saretto, and Young’s manager for Mimesis com-
puted a variety of possible futures in terms of plans that in-
cluded player and character actions – its representation was
highly granular. However, its computations occurred both
before the experience started (for all potential exceptions
that could occur in the given original story), as well as on-
line (for any exceptions to a repaired story). These online
computations were distributed across times of low processor
activity in advance of any exception occurring, so that the
results would be ready as soon as they were needed.

The rollout function used by Yu and Riedl’s (2015) PDM
is more similar to that of Façade’s DM than it is to Riedl’s
prior work on Mimesis, in that the PDM used a granularity
that is relatively low: character-focused plot points. How-
ever, one difference between the PDM and Façade’s DM
is that the PDM’s rollout function generated complete fu-
ture experiences, while Façade’s DM only considered fu-
tures that extended to a single subsequent beat.

Similarly to Riedl, Saretto, and Young’s manager for
Mimesis, PAST considered potential futures at the granular-
ity of character actions. However, instead of precomputing
these potential futures, PAST computed them just-in-time.
This difference was necessitated by PAST’s use of a learned
player model, because the number of possible configurations
of the model made it intractable to exhaustively compute all
possible futures in advance.

5.4 Estimated Player Policies
An estimated player policy allows the manager to model a
player’s behaviour and thus examine potential futures in a
more player-focused way. The main goal of using this func-
tion is to predict the probability with which each possible
future can occur. The primary difference between the two
estimated player policies that we considered (the PDM’s
and PAST’s) illustrates a common concern that arises when
models of player preferences are used: When the data avail-
able to learn the model is sparse, it can be unwise to place too
much confidence in the model’s predictive power. Ramirez
and Bulitko (2015)’s sparse player data led them to only
use their model for assessing quality (and not for predict-
ing player actions); they relied on an assumption of inaction
(only observation) instead. Meanwhile, Yu and Riedl (2015)

used Collaborative Filtering to extend the usefulness of the
player-specific data that they could gather, and were able to
obtain useful actions predictions.

Neither of the managers for Façade and Mimesis used an
estimated player policy, but there seems to be nothing about
their designs that would prevent one from being used. Doing
so could potentially allow the Mimesis manager to handle
larger story plans (by avoiding an exhaustive consideration
of actions) and Façade’s DM might be able to choose beats
more effectively by looking farther into the future.

5.5 Feature Vectors
A feature vector allows the designer to identify and com-
pactly represent patterns in trajectories that can simplify
the specification and computation of other functions. The
managers that we analyzed differed with respect to how
they implemented their feature vectors; two managers used
simple algebra and hand-authored annotations (Façade’s
DM and PAST), and one used a machine-learned approach
(the PDM). We discussed the benefits and limitations of
hand-authoring versus machine learning in Section 5.2. Al-
though Riedl, Saretto, and Young (2003) did not describe
any features that were used by their manager, a variety of
features pertaining to narrative structure can be found in re-
lated work (Weyhrauch 1997; Nelson et al. 2006).

Conclusions and Future Work
In this paper, we considered the field of Experience Man-
agement and some of its related concerns. In doing so, we
have made the following contributions. First, we presented a
focused, conceptual summary of Thue’s (2015) Generalized
Experience Management framework, which was previously
only available in an extended and mathematical format. Sec-
ond, we used this framework to identify common, compara-
ble elements for four diverse experience managers, which
together span much of the history of the field. Third, we
used the identified elements to directly compare the differ-
ent managers’ designs, and these comparisons led to a vari-
ety of insights concerning how the different building blocks
of a manager can be made. To the best of our knowledge,
this work represents the first direct comparison between the
internal designs of different experience managers. As a re-
sult, we hope that it will be considered by others in the field
as a proof of existence: comparisons between the designs of
managers can be made, and they can offer useful results.

Looking forward, it should be desirable to perform ad-
ditional analyses like the four that we presented in this pa-
per – both on the variety of other managers that already ex-
ist, and on new managers as they are created. By including
a similar analysis of a new manager as part of its publica-
tion, authors will immediately gain a context in which they
can meaningfully compare their new work to the managers
that came before. Furthermore, given the modularity of the
GEM framework, it might serve as a useful guide for build-
ing new managers that benefit directly from the techniques
that other managers have used. This was demonstrated once
by Ramirez and Bulitko (2015)’s construction of PAST us-
ing a precursor to GEM (Thue and Bulitko 2012), and we
hope that more examples will follow.



References
Bae, B.-C., and Young, R. 2008. A use of flashback and
foreshadowing for surprise arousal in narrative using a plan-
based approach. In 1st International Conference on Interac-
tive Digital Storytelling, 156–167. Erfurt, DE: Springer.
Barber, H., and Kudenko, D. 2007. Dynamic generation of
dilemma-based interactive narratives. In 3rd AI and Interac-
tive Digital Entertainment Conference (AIIDE 2007), 2–7.
Palo Alto, California: AAAI Press.
Booth, M. 2009. The AI systems of Left 4 Dead. Presenta-
tion at the Fifth Artificial Intelligence and Interactive Digital
Entertainment Conference (AIIDE 2009).
Chen, S.; Nelson, M. J.; and Mateas, M. 2009. Evaluating
the authorial leverage of drama management. In The 5th AI
and Interactive Digital Entertainment Conference (AIIDE),
136–141. Palo Alto, California: AAAI Press.
Ha, E. Y.; Rowe, J. P.; Mott, B. W.; and Lester, J. C. 2011.
Goal recognition with markov logic networks for player-
adaptive games. In 7th AAAI Conference on AI and Interac-
tive Digital Entertainment, AIIDE’11, 32–39. AAAI Press.
Hunicke, R., and Chapman, V. 2004. AI for dynamic diffi-
culty adjustment in games. In Challenges in Game AI Work-
shop, Nineteenth National Conference on Artificial Intelli-
gence, 91–96. San Jose, California: AAAI Press.
Laurel, B. K. 1986. Toward the Design of a Computer-Based
Interactive Fantasy System. Ph.D. Dissertation, Ohio State
University.
Lindley, C. A., and Sennersten, C. C. 2006. Game play
schemas: From player analysis to adaptive game mechanics.
In International Conference on Game Research and Devel-
opment, CyberGames ’06, 47–53. Murdoch University.
Mateas, M., and Stern, A. 2005. Procedural authorship: A
case-study of the interactive drama Façade. In Digital Arts
and Culture (DAC).
Mateas, M. 2002. Interactive Drama, Art, and Artificial In-
telligence. Ph.D. Dissertation, Carnegie Mellon University.
Min, W.; Mott, B.; Rowe, J.; Liu, B.; and Lester, J. 2016.
Player Goal Recognition in Open-World Digital Games with
Long Short-Term Memory. In 25th International Joint Con-
ference on AI, 2590–2596.
Nelson, M. J., and Mateas, M. 2008. Another Look at
Search-Based Drama Management. In 23rd Conference on
Artificial Intelligence, 792–797. Chicago, IL: AAAI Press.
Nelson, M. J.; Roberts, D. L.; Isbell, Jr., C. L.; and
Mateas, M. 2006. Reinforcement learning for declarative
optimization-based drama management. In 5th International
Conference on Autonomous Agents and Multiagent Systems,
AAMAS ’06, 775–782. New York, NY, USA: ACM.
Ramirez, A., and Bulitko, V. 2015. Automated Planning and
Player Modeling for Interactive Storytelling. Transactions
on Computational Intelligence and AI in Games 375–386.
Riedl, M. O., and Stern, A. 2006. Believable agents and
intelligent story adaptation for interactive storytelling. In
3rd International Conference on Technologies for Interac-
tive Digital Storytelling and Entertainment, 1–12. Darm-
stad, DE: Springer.

Riedl, M. O.; Stern, A.; Dini, D.; and Alderman, J. 2008.
Dynamic experience management in virtual worlds for en-
tertainment, education, and training. International Transac-
tions on Systems Science and Applications, Special Issue on
Agent Based Systems for Human Learning 4(2):23–42.
Riedl, M.; Saretto, C. J.; and Young, R. M. 2003. Managing
interaction between users and agents in a multi-agent story-
telling environment. In 2nd International Joint Conference
on Autonomous Agents and Multiagent Systems, AAMAS
’03, 741–748. New York, NY, USA: ACM.
Roberts, D. L., and Isbell, C. L. 2008. A survey and qual-
itative analysis of recent advances in drama management.
International Transactions on Systems Science and Applica-
tions - ITSSA 4(2):61–75.
Thue, D., and Bulitko, V. 2012. Procedural Game Adap-
tation: Framing Experience Management as Changing an
MDP. In 5th Workshop on Intelligent Narrative Technolo-
gies, 44–50. Palo Alto, California: AAAI Press.
Thue, D., and Bulitko, V. 2018. Toward a Unified Under-
standing of Experience Management. In Proceedings of the
14th AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment (AIIDE’18). AAAI Press.
Thue, D., and Carstensdottir, E. 2018. Getting to the point:
Toward resolving ambiguity in intelligent narrative tech-
nologies. In Workshops on Intelligent Narrative Technolo-
gies and Intelligent Cinematography and Editing, 9. CEUR.
Thue, D.; Bulitko, V.; Spetch, M.; and Wasylishen, E. 2007.
Interactive storytelling: A player modelling approach. In 3rd
AI and Interactive Digital Entertainment Conference (AI-
IDE 2007), 43–48. Palo Alto, California: AAAI Press.
Thue, D.; Bulitko, V.; Spetch, M.; and Romanuik, T. 2011.
A computational model of perceived agency in video games.
In AI and Interactive Digital Entertainment Conference (AI-
IDE), 91–96. Palo Alto, California, USA: AAAI Press.
Thue, D. 2015. Generalized Experience Management. Ph.D.
Dissertation, University of Alberta, Canada.
Valve Corporation. 2008. Left 4 Dead. www.l4d.com.
Weyhrauch, P. 1997. Guiding interactive drama. Ph.D.
Dissertation, Canergie Mellon University, Pittsburgh, PA.
Young, R. M. 2001. An Overview of the Mimesis Archi-
tecture: Integrating Intelligent Narrative Control into an Ex-
isting Gaming Environment. In Notes of the AAAI Spring
Symposium on AI and Interactive Entertainment, 77–81.
Yu, H., and Riedl, M. O. 2012. A sequential recommenda-
tion approach for interactive personalized story generation.
In 11th International Conference on Autonomous Agents
and Multiagent Systems - Volume 1, AAMAS ’12, 71–78.
Richland, SC: International Foundation for AAMAS.
Yu, H., and Riedl, M. O. 2013. Data-driven personalized
drama management. In 9th AI and Interactive Digital Enter-
tainment Conference (AIIDE’13), 191–197. AAAI Press.
Yu, H., and Riedl, M. O. 2015. Optimizing Players’ Ex-
pected Enjoyment in Interactive Stories. In 11th AI and
Interactive Digital Entertainment Conference (AIIDE’15),
100–106. AAAI Press.


