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Abstract

Generative Graph grammars are an established technique for
procedural content generation (PCG) of the mission space of
dungeon levels, as they allow for explicit specification of de-
sign intention. However, they are difficult to control beyond
the initial specification. Defining effective grammars requires
both design expertise and familiarity with how grammars
work, and even then the resulting grammar is not guaranteed
to generate missions that fit a designer’s intention. In this pa-
per, we propose a system that attempts to allow designers to
affect an existing grammar’s generative space by allowing de-
signers to control the probability distribution induced by the
grammar. The system does this by learning the parameters of
a probabilistic graph grammar from examples. Designers can
control the generation of these examples via specification of
assessment criteria, and a threshold above or below which the
output is generated. We conclude with a demonstration of the
efficacy of the system in shifting the distribution of the gen-
erative space.

Introduction
Procedural content generation (PCG) in games is a growing
field in game AI that has received increasing interest in re-
cent years (Liapis 2020). It promises to reduce the burden of
game development by providing tools that assist with gener-
ating game artifacts such as levels. Designing levels is a cre-
atively involved process that is difficult to do well, even for
specialized experts. Therefore, despite this growing body of
work, automatically creating levels that are of similar qual-
ity to those made by human designers remains a challenge
(Rodriguez Torrado et al. 2020).

Because of this challenge, many techniques opt to have
their generative process be as transparent and controllable as
possible, such that game developers can adjust it if needed.
One approach to make the generation process interpretable
by level designers is graph grammars. Graph grammars are
an established framework for visual programming (Rozen-
berg 1997), and were popularized for use in the context of
dungeon level generation by Dormans and Bakkes (2011).

Graphs are a common representation for content genera-
tion in other contexts as well (Li and Riedl 2015; Londoño
and Missura 2015), making graph grammars potentially
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widely applicable. However, coming up with a graph gram-
mar that captures the intent of the designer is a difficult and
time-consuming task. Predicting the effects of rules on the
generative space of the grammar is hard and error-prone.
Oftentimes, unintended consequences of rules result in un-
desirable artifacts, such as unplayable levels. To avoid this,
the design of grammars focuses on guaranteeing playability
above all else.

However, there are other design considerations that are
taken into account when coming up with a dungeon level.
For example, Adams et al. (2002) outlines that low-quality
levels suffer from the ‘pointless area’ problem, where entire
sections of the level do not have any reward to the player and
are not part of the main path to complete the level. Or a level
may be completable but trivially so, requiring the player to
traverse one or two rooms to reach the end. Such considera-
tions are difficult to capture in grammar rules that must also
guarantee playability.

Therefore, some approaches opt to use a more general
grammar and let designers control which rules are applied
either manually step-by-step (Dormans and Bakkes 2011)
or through a list of which rules to apply and in what order,
which Dormans (2011) refers to as recipes. These recipes
serve as the means by which designers restrict the genera-
tive space of the grammar to areas that fit their design intent.
In other words, recipes adjust the probability distribution in-
duced by the grammar such that the grammar is less likely to
generate undesirable graphs, and more likely to generate de-
sirable ones. Lavender (2016) demonstrates how this could
be done by using the grammar given in Dormans and Bakkes
(2011); by utilizing different recipes, they were able to gen-
erate different kinds of dungeons without altering the origi-
nal grammar. These recipes, however, operate in the space of
the grammar, and therefore requires designers to be familiar
with how grammars work.

Ensuring design criteria are met is a common concern
for many level PCG techniques, especially those that rely
on machine learning algorithms (Summerville et al. 2018).
There have been attempts to address this by reducing the
likelihood of a generator to produce undesirable levels
(Summerville et al. 2016; Di Liello et al. 2020). Such ef-
forts have yet to be extended to graph grammars. In fact,
to the best of our knowledge, no previous attempt has been
made to adjust an existing graph grammar towards captur-



ing design considerations via learning from designer made
examples or examples generated by the grammar.

In this paper, we propose a system for adjusting the prob-
ability distribution over the mission graphs of dungeons in-
duced by a graph grammar via examples generated by the
grammar. To facilitate these adjustments, we propose an ex-
tension to the existing formalization of graph grammars in
Dormans and Bakkes (2011). We alter their definition to in-
clude explicit probabilities at different levels of specificity.
This provides the system with parameters to adjust, and thus
provides a knob by which designers can control the output
of the grammar after its specification. These parameters are
learned from examples, the generation of which is controlled
by designers. We evaluate our approach, demonstrating its
ability to shape a grammar’s distribution towards that of
the given examples, thereby making the grammar generate
graphs that are similar to the given examples.

Related Work
Previous work on dungeon level generation has largely fo-
cused on search-based techniques (van der Linden, Lopes,
and Bidarra 2014). These approaches require specification
of a fitness function that summarizes the quality of the level.
This function is often difficult to come up with, even for
domain experts. In most of these techniques, it is also the
primary means of control designers have over the genera-
tion process. Alvarez et al. (2018) address this by provid-
ing more control to the designer via a co-creative system.
This system provides suggestions as the designer is creat-
ing a dungeon. Dungeons in this system are in a tile-based
representation. The system then identifies two levels of pat-
terns, micro and meso. Micro patterns are concerned with
base tiles and how they relate to the tiles surrounding it.
Meso-patterns on the other hand, consider the relation of
micro-patterns and meso-patterns. The suggestions the sys-
tem proposes use these tile-based patterns for chunks of the
dungeon, whilst our work focuses on a high level depiction
of the flow of the level that is specified by graphs.

Generation of this more abstract notion of a level via
graph grammars was proposed by Dormans and Bakkes
(2011). They split the generation of dungeon levels into two
distinct processes; ‘mission’ generation and ‘space’ gener-
ation. The mission, represented as a graph, encodes the de-
sired trajectory of the player through the level, whilst the
space specifies where that experience takes place. Dormans
and Bakkes (2011) use shape grammars to turn a mission
graph into level geometry, whilst other work has explored
using GANs Gutierrez and Schrum (2020). We focus in this
paper on the generation of mission graphs.

The graph grammars proposed by Dormans and Bakkes
(2011) constrains the generative space of the grammar with
what is referred to as recipes (Dormans 2011). The recipes
dictate what rules should be applied and in what order. These
recipes are hand-coded by the designers and as such they in-
crease the specification requirements of this approach. In ad-
dition, these recipes are difficult to come up such that the re-
sulting graphs are playable and meet specific design criteria.
We extend this work by allowing the grammar to be guided
by examples, which allows designers to think in terms of the

design of the mission graphs they wish to generate and not
grammar rules.

Outside of dungeon generation, graph grammars have
found other uses in the PCG literature. Londoño and Mis-
sura (2015) proposed a graph representation of Super Mario
Levels and a system to learn a probabilistic graph gram-
mar from existing levels. Hauck and Aranha (2020) extend
this work and propose a system for generating new Mario
levels that utilizes the learned structure of the graph repre-
sentation. This work focuses on context-free graph gram-
mars (CFGGs). These are grammars that constrain the left-
hand side of a production rule to be a single non-terminal
vertex, whilst context-sensitive graph grammars (CSGGs)
are more general and allow for the left-hand side to be a
graph comprised of both non-terminal and terminal vertices.
Adams et al. (2002) showed that unlike string based gram-
mars, CFGGs are significantly less expressive than CSGGs.
There are many rules that can be expressed in a CSGG that
cannot be reduced to rules in a CFGG. This severely lim-
its the capability of context-free grammars as a generative
method. Due to this limitation, our work and that of Dor-
mans and Bakkes (2011) focuses on context-sensitive graph
grammars.

Another system that uses context-sensitive graph gram-
mars is that proposed by Valls-Vargas, Zhu, and Ontañón
(2017). They utilize multiple stochastic context-sensitive
graph grammars to generate puzzle levels for an educational
game. Each rule in the grammar has a weight associated with
it and a discount factor. When a rule is used, its weight is
decreased by the discount factor. Despite parameterizing the
rules of the grammars with weights, they did not explore
learning these parameters from examples.

Though little work has explored adjusting a graph gram-
mar based on examples, there has been work on altering
other types of grammars. Shaker et al. (2012) proposed a
system for evolving grammar rules for a context-free gram-
mar that generated Mario levels. This system operated on
string-based grammars and adjusted the rules based on hand-
written fitness functions and not training data.

Dang et al. (2015) do propose a framework that adjusts
context-free shape grammars based on examples. The type
of shape grammars used in this work are established gram-
mars for automatically generating 3D objects such as build-
ings, trees and tables. They propose a human-in-the-loop
framework that allows designers to designate the distribution
over the generated 3D models of these grammars via scor-
ing of examples. This framework is similar to our system
but operates on context-free shape grammars, we focus on a
more expressive type of grammars; context-sensitive graph
grammars. Thus, we parameterize our grammar formulation
differently.

Methodology
The Graph Grammar System
There are many types and formalizations of graph grammars
(Rozenberg 1997). For this work, we consider the graph
grammar system proposed by Dormans and Bakkes (2011).
These grammars operate by applying rules to rewrite a graph



Label Meaning
S/s Start
T/t Task
G/g Goal

k key
l lock
* Wildcard

(a) Node Labels

S T

G
(b) Initial graph

1:S 2:T 1:s 3:T 2:T
1:s 3:T

4:T2:T

1:S 2:G 1:s 3:T 2:g

1:T 2:G 1:k 3:T 4:l 2:g

1:T 1:k 2:T 3:l 1:k 2:t 3:l

1:* 2:T 3:*
1:* 2:k 3:T

3:l3:*

1:* 2:k 4:t

5:l3:*

(c) The set of production rules

Figure 1: An example of a simple graph grammar for generating dungeon mission graphs;a) shows the node labels of graphs in
the grammar b) shows the starting graph of the grammar whilst c) shows the grammar’s production rules. The dark grey nodes
in the production rules are wildcard nodes that can match with any node. Adapted from Shaker, Togelius, and Nelson (2016,
Chapter 5)

until no rule is applicable or a maximum number of appli-
cations is met. Figure 1 is a toy example of such a gram-
mar. They are defined by an initial graph that gets altered
according to the production rules. Rewriting a graph works
by first finding a subgraph in the original graph that matches
the left-hand side graph of a production rule. For two graphs
to match, they must have the same graph topology and the
same node labels. Figure 1a shows the node labels of the toy
grammar. Note that graphs in production rules have nodes
that can be labeled as ‘wild-card’ which means they can
match with a node that has any label. In the toy grammar,
this is represented by the ‘*’ character. Next, we mark that
subgraph by copying the markers of the nodes from the left-
hand side. These markers indicate which nodes will be re-
placed by which nodes in the right-hand side of the rule.
Then we check if there are nodes or edges in the subgraph
that exist in the right-hand side of the rule, if not then we
delete them. Then we add any nodes and edges in the right-
hand side that do not exist in the left-hand side. Finally, we
remove all the markers from the subgraph.

Proposed Extension
To effectively control the generative space of the grammars,
we need parameters that we can adjust. To this end, we ex-
tend the graph grammar system described earlier to incorpo-
rate explicit probabilities for production rules. There are two
types of these probabilities: the probability of which of the
possible left-hand-side graphs is chosen and the probability
of which right-hand-side graph of a rule is being chosen. The
probability of which right-hand-side gets chosen is what pre-
vious work on probabilistic grammars has considered (Dang
et al. 2015). However, this alone does not fully parameterize
the generation process, and a level of uncontrolled stochas-
ticity remains.

To illustrate this, consider the toy grammar in Figure 1.

We see that there are multiple left-hand side graphs that we
can match to the starting graph. Initially all rules are appli-
cable, if we select the first rule to apply on the initial graph
then the second is no longer applicable, and if we select
the second rule then the first would no longer be applica-
ble. The probability of which left-hand-side we pick controls
which of these scenarios plays out in the generation process.
Recipes as defined in (Dormans 2011) let the designer spec-
ify this directly by stating what rules ought to be selected and
in what order. In contrast, our approach attempts to learn this
from examples.

When defining a grammar, it is tractable to specify the
probabilities of which right-hand-side gets chosen in a rule,
the same cannot be said of the probabilities of which left-
hand-side gets picked. These probabilities are defined based
on which rules are applicable, and thus changes from one
step of the generation process to the next. Therefore, we set
the distribution of these probabilities to be initially uniform
and learn it from examples. To be able to do that, we need
a way of keeping track of which left-hand-side in the ap-
plicable rules is selected and the set of other left-hand-side
graphs that could have been picked. Thus, for each graph
generated by the grammar, we keep track of the production
rules that were applied and what production rules could have
been applied in what we call a generation chain. This gen-
eration chain keeps track of what the applicable production
rules were at every step of the generation process, and which
production rule in that set was selected.

Updating Grammar Parameters Once we have a train-
ing set, we can observe the production rules used to generate
each graph and use that information to update the produc-
tion rule probabilities. First, we update the probabilities of
the right-hand side graphs according to what right-hand side
was selected in the training data. This involves counting how



many times a given right-hand-side graph was chosen and
dividing it by how many times its corresponding rule was
applied in the training set. Formally, given a set of graphs
GX = {G1 . . . , Gn}, we can update the i-th right-hand side
probability of production rule r, p(r : Gleft → Gright

i | GX)
by setting it equal to:

C(r : Gleft → Gright
i | GX)∑

Gright
a

C(r : Gleft → Gright
a | GX)

(1)

where C(r : Gleft → Gright
a ) is the count of how many times

Gl has been replaced with Ga in the training set GX .
We then update the probabilities of the left-hand side

graphs. Recall that we defined a generation chain that kept
track of which production rules were chosen and which were
available at the time a rule was picked. We go through the
generation chains of all the graphs in our data-set and keep
track of which sets of options were available. We then count
how many times a given left-hand side graph was chosen in
a given set of applicable rules and divide it by how many
times that set of applicable rules shows up in the training
set.

Formally define Pd to be the set of production rules that
are available at a given depth d of the generation chain,
C(Pd | GX) to be the count of how many times this set
appears at any depth in the chains that generate the training
data-set, GX and pr ∈ Pd to be a production rule in that set.
We update the probability of this production rule by

p(pr | Pd) =
C(pr | GX , Pd)

C(Pd | GX)
(2)

where C(pr | GX , Pd) is the count of how many times pr
was chosen in GX when the options for rule applications
were Pd.

Generating Examples
Our system attempts to help designers inform grammars
of their design considerations by providing examples from
which a grammar can learn. These examples ought to cap-
ture the desirable qualities that a designer wants the gram-
mar to replicate. The best means by which designers can
generate those examples is a research question in its own
right. For the purposes of this paper, we assess the gram-
mar’s output via a scoring function and then specify a thresh-
old, whereby any graph that exceeds or falls short of the
threshold is added to the training set. For example, a de-
signer may give a function that measures how easy a mission
graph is to play through and use a certain threshold to indi-
cate the desired difficulty of graphs to be generated by the
grammar. We take this approach as it clearly demonstrates
how the generative space shifts towards the provided exam-
ples.

There are many scoring functions one can define, in this
paper we consider metrics used in previous work to ana-
lyze dungeon level generators. There does not exist an es-
tablished set of metrics for dungeon levels like there is for
platformer levels (Horn et al. 2014). Therefore, we follow
the example set by Smith, Padget, and Vidler (2018) and

adapted the metrics put forth by Lavender (2016), which
were in turn inspired by Smith and Whitehead (2010):
• Mission Linearity: which captures the linearity of the

mission structure. We calculate it as follows:
#of nodes on shortest direct path to the end

Total nodes in graph

• Map Linearity: which captures the linearity of the map
layouts. In the graphs this is seen by how many outgoing
edges a node has. We calculate it as follows:

#of single exit rooms + (0.5×#of double exit rooms)
Total rooms with exits

• Leniency: which captures how easy the level is to play
based on the amount of rooms where the player is likely
to encounter danger. We calculate it as follows:

#of safe rooms
Total rooms

• Path Redundancy: which captures how many useless
rooms there are in the graph. Useless rooms in our con-
text are defined as nodes that do not have any out-going
edges and do not provide the player with any reward in
themselves. We calculate it as follows:

#of useless rooms
Total rooms

Results
For our experimental evaluations, we utilized the grammar
given in Dormans and Bakkes (2011). Code of our sys-
tem and the experiments we ran can be found on Github
1. Following the approach taken by Smith, Padget, and Vi-
dler (2018) and Lavender (2016), we generate 1000 mission
graphs of the unaltered grammar and calculated their scores
according to the four metrics we described earlier. Figure 2a
shows the expressive range heat-map of the unaltered gram-
mar, without the use of recipes. Next we picked a threshold
for Leniency, Path Redundancy and Mission Linearity. We
then generate our training set by choosing graphs that ex-
ceed the threshold, train the grammar on that training set
and visualize the heat-map of the resulting grammar. Figure
2b shows the expressive range heat-map of the altered gram-
mar. We see that the generative space has moved towards the
values above the threshold.

We repeated the same process but changed the threshold
value and picked examples that were below the threshold.
Figure 2c shows the expressive range heat-map of the result-
ing grammar. Once again, we see that the generative space
has shifted towards the specified value.

We additionally ran 100 trials, where we repeated the pro-
cess described above and kept track of how many graphs
were above or below the threshold before and after training.
Table 1 summarizes our findings. Despite not guaranteeing
that the grammar will only generate graphs that meet the de-
sired threshold, we greatly reduce the number of graphs that
fall outside it.

1https://github.com/a3madkour/pgg



(a) The expressive range across the metrics proposed in Lavender (2016) and used in Smith, Padget, and Vidler (2018) of the grammar before
alteration.

(b) The expressive range of the grammar after being trained on examples that are above a threshold. The threshold is indicated by the red line.

(c) The expressive range of the grammar after being trained on examples that are below a threshold. The threshold is indicated by the white
line.

Figure 2: The expressive range of grammars; 2a is for the unaltered grammar, whilst 2b-c for each of the design scenarios we
considered.

Scenario Before After
Le above 0.5 123 (± 10.3) 684.4 (± 25.7)
PR above 0.1 182 (± 13.6) 612.5 (± 24.3)

ML above 0.55 122 (± 10.9) 719 (± 23.2)
Le below 0.3 240 (± 14.9) 762.3 (± 16.4)

PR below 0.04 325 (± 14.3) 700.8 (± 18.1)
ML below 0.4 112 (± 9.5) 591.3 (± 22.8)

Table 1: Average number of graphs (std) that were above or
below a given threshold before and after grammar adjust-
ment. Le is leniency, PR is path redundancy and ML is mis-
sion linearity.

Discussion
Our experimental analysis demonstrates that learning gram-
mar parameters from examples successfully adjusted the dis-
tribution induced by the grammar. Thus, we demonstrated
the feasibility of controlling generative graph grammars
through example generation; which gives designers a way

Scenario Le PR ML
Figure 2b 232 130 105
Figure 2c 245 340 101

Table 2: The size of the training set for each scenario used
to train the grammars for Figure 2.Le is leniency, PR is path
redundancy and ML is mission linearity.

of adjusting a generative grammar towards their design in-
tention without needing to think about grammar rules.

A limitation of the system is that examples that are used
for training must be generated by the grammar. A promising
avenue of future work is exploring the possibility of learn-
ing them from designer generated examples. Another would
be looking into learning grammar rules from the examples.
Only altering the probabilities of the system does not change
the original generative space. It alters in which areas in the
generative space the grammar is more likely to generate.

This work also calls for a user study that assesses what



mechanism designers prefer using to control distribution of
the grammar. In the context of our system, this would en-
tail figuring out what means of generating training examples
designers prefer using, and which most facilitates thinking
in terms of design intention as opposed to grammar rules.
Ideally, designers only have to think in terms of the artifacts
they wish to generate, not the logic or parameters of their
generator. Designing well-formed and sufficiently genera-
tive grammars requires a different skill set than designing
dungeons. Thus, providing designers with the tools that al-
lows them to operate in the space of what they know well,
and use it to adjust an existing grammar will improve the
usability of graph grammars as a generative tool.

Recent work on guidelines for human-AI interaction sug-
gest that for AI systems to better fit with human intention,
more direct involvement is required (Amershi et al. 2019).
Though some work has explored how to better explain the
output of PCG systems (Cook et al. 2021), there is little on
how to make them more directly specifiable and controllable
by nontechnical designers. As Cook et al. (2021) describe,
the parameters of generators often do not map directly to
output metrics that are of relevance to designers. By allow-
ing designers to operate in the space of the outcome of the
generator, we position our work as a step towards reducing
this mismatch of desired outcome and specification of PCG
systems, and thus achieve more accessibility in controlling
them.

Conclusion
We presented a system for adjusting the generative space of
a graph grammar for dungeon generation based on exam-
ples. To do so, we proposed an extension of existing graph
grammars to allow for the use of probabilities that can then
be learned. Our experiments demonstrate that our approach
is successful in shifting the generative space towards that of
the generated examples. Finally, we discuss how generating
a set of high quality examples is potentially an accessible
method of providing designer control over generative gram-
mars beyond initial specification.
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