
Designing a Combined World and Story Procedural Content Generation Engine

Brenden Lech1, Sasha Azad1, Jennifer Welnitz1, Joel Jonasson2, Chris Martens1
1 North Carolina State University, USA

2 Blast Bit Enterprises AB, Sweden
{bglech, sasha.azad, mawellni}@ncsu.edu, joel.jonasson@blastbit.net, crmarten@ncsu.edu

Abstract
Procedural content generation (PCG) has seen relative
widespread adoption in games and game development. While
PCG methods are gaining traction in commercial games,
there are comparatively fewer cases where PCG has been
used to generate the game world, characters, and the narrative
for a single game. We present our research, collaborating with
a small independent game studio, on the design of a game
engine designed to generate a world, characters, supporting
quests and overarching narrative content for their upcoming
game. We discuss our choice of game artificial intelligence
algorithms, decisions made in designing our system, and our
progress and implementation under the constraints and re-
quirements given to us. We posit our system will generate a
rich game world with an explainable world history for players
to explore and quests to complete. We believe that our engine
will meet their requirements increasing the replayability of
the game, reducing the authorship burden, while providing
the authors with significant control over quest and narrative
structure.

Introduction
As commercial video games grow more complex and busi-
ness models such as free-to-play (F2P) become more com-
mon, there is a need for tools and methodologies that can
help generate the growing amount of content the games
require (Hendrikx et al. 2013). A class of AI algorithms
termed as Procedural content generation (PCG) algorithms
is one solution to this problem. PCG algorithms can generate
game content such as levels, terrain, and other objects during
game development or run-time. PCG has aided a wide va-
riety of use-cases, from generating individual quests for the
player, to generating non-player characters (NPCs) with mo-
tives and emotions, or generating the terrain of entire game
worlds (Hendrikx et al. 2013; Smith et al. 2011). They can
reduce the authoring burden on game designers, increase
the replayability (Smith et al. 2011) of games by continu-
ally generating new content during runtime, or even produce
unexpected content that human designers may not have con-
ceived of (Togelius et al. 2011).

Within the games industry, these benefits of PCG have
been realized especially for world generation, with exam-
ples including games such as Minecraft, the Diablo series,

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Dwarf Fortress, all of which employ PCG to create
their terrain and dungeons (Persson and Bergensten 2011;
Adams and Adams 2006; Brevik 1997). However, despite
the industry’s adoption of PCG, there remains a lack of com-
mercial adoption of AI PCG strategies developed in research
contexts (Van Der Linden, Lopes, and Bidarra 2013).

We collaborated with Blast Bit Enterprises, a small, inde-
pendent game development studio, to design a mobile game.
Their game needed to have high replayability. They required
a “game and story engine,” a system capable of procedurally
generating both the world, quests and narratives that guide
the player’s gameplay experience. Such a system could also
afford players more agency than a manually-authored story
by allowing the player to shape the narrative through their
actions. As this story engine would define the player’s game-
play experience, its design constitutes a crucial part of Blast
Bit’s game.

We describe our approach toward solving this problem by
proposing a system design for Blast Bit’s game and narra-
tive engine and providing an implementation of part of the
proposed system. We discuss our software design process

Figure 1: Gameplay depicting a player exploring the forest
terrain (on the left) and battling another NPC (on the right)

Figure 2: An example of the biomes generated in Blast Bit’s Lance A Lot game. From the left this includes the quarry, forest,
snow, and desert biomes.

and selection of procedural content generation algorithms
and procedures working around the constraints given to us
by the studio resulting in the development of their PCG En-
gine.

Related Work
In this section, we overview the prior use of context-free
grammars (CFGs), logic programming and story systems in
research and describe how they connect to our system de-
sign.

Grammar-Based Systems
Context-Free Grammars (CFGs) (Compton, Filstrup, and
others 2014) have been used in prior work to generate new
content (Gellel and Sweetser 2020; Dormans 2011) satis-
fying encoded grammar rules. While CFGs afford authors
a high degree of control over the algorithm’s output, they
have been previously criticized as being unable to generate
sophisticated stories (Black and Wilensky 1979).

Doran and Parberry (2011) detail a grammar-based ap-
proach to generating RPG quests in games. They identi-
fied common narrative and gameplay structures featured in
human-authored quests and encoded these structures as rules
in a CFG. While their system shows promise for generating
individual quests, their generated quests take place in a rela-
tive vacuum: they have no connection to each other or other
narrative structures. Additional work would be required to
generate quests that take place in the context of the larger,
overarching narrative structures as was required by our sys-
tem.

In the domain of level generation, Dormans and Bakkes
(2011) present a system that utilizes graph grammars to gen-
erate missions and level maps. However, while their system
produces an interesting mission structure, producing the de-
sired narrative structure is outside of its scope. Therefore,
modifications would be needed to utilize a similar approach
for generating quests with a stronger focus on storytelling.

Logic Programming
Logic programming is another promising approach, defin-
ing the world or its objects as predicates and implica-
tions (Bosser, Cavazza, and Champagnat 2010; Martens
et al. 2014). Logic programming has been discussed as

viable for specifying stories and analyzing their causal
structure (Martens et al. 2014), generate mazes, levels of
dungeon-crawler games, and in narrative planning sys-
tems (Nelson and Smith 2016; Dabral and Martens 2020)
with tools such as CatSAT (Horswill 2018) allowing for the
adoption of declarative programming in runtime PCG ap-
plications. While these uses have been explored separately,
further work is needed to determine strategies for weaving
together world and story models in ASP-based systems.

Story Systems

Narrative systems such as Versu (Evans and Short 2013)
have been previously characterized as one of strong auton-
omy, or one where characters choose their actions as indi-
vidual agents (Riedl and Bulitko 2013). In contrast, strong
story systems manage NPC behavior via a centralized sys-
tem such as an experience manager or drama manager (Riedl
and Bulitko 2013) that dictates character behaviour to weave
a cohesive story. Our work falls more on the side of “strong
story” systems with our story and history generators act as
a Drama Manager, dictating the actions of NPCs to advance
the narrative.

Caves of Qud employs a novel method of generating
unique worlds and quests, in which the world and story both
are generated in stages: the first, a generic story, at the world
construction, and the second when the player first enters a
specific region, to finalize the details of the environment and
associated story or quest (Grinblat and Bucklew 2020). Fur-
ther, Caves of Qud includes a sophisticated history gener-
ation system, generating contextual histories, filling in the
necessary details using a grammar like structure (Grinblat
and Bucklew 2017). This multi-stage environment, story
generation, and history generation in Caves of Qud are rele-
vant to the work presented in this paper.

Finally, prior work has been done on using PetriNets, a
graph based structure for narrative mediation, player choice
enumeration and planning (Riedl et al. 2011; Azad et al.
2017). Our system uses a similar concept, detecting when
a region-node can be activated based on meeting the precon-
ditions of generating the biomes, quests or history for the
same.

Overview of the Game and Engine
This section gives the reader an overview of the game being
developed by our industry collaborators, Blast Bit. We also
describe the existing game engine and the goal and require-
ments of the project.

Figure 3: The system design for the story engine. Each gen-
erator feeds information into the next to generate aspects of
the new game area.

The Lance A Lot Game
The game (working title “Lance a Lot”) is designed for
the mobile market. The game is a third-person role-playing
game where the player is taken on a lighthearted journey
through a fantasy world that does not take itself all too se-
riously. The game is created for players who enjoy explo-
ration, interaction with hilarious characters, finding magi-
cal items and a good sword-fight. Through the journey, the
player will interact with human and non-human NPCs, com-
plete quests, fight enemies, and maybe even make choices
that shape how the story unfolds.

Game Engine
The game world is divided into several separate, procedu-
rally generated areas. Each area has its environment type,
physical features, NPC characters, and associated quests.
Upon entering a new area, the story engine defines the con-
tents of that area – including characters, interactive objects,
and quests – then sends this information to the world gen-
erator, which creates the physical layout of the world and
populates it with the requested features.

The current game engine uses placeholder example terrain
and quests. The generated information about the world state
is stored in a knowledge base. Blast Bit’s ontological knowl-
edge base includes the following categories and features de-
scribed below as facts about the world. We also include a
few examples from each category

• Biomes: Snow, Water bodies, Quarries, Mountains,
Desert (depicted in Fig. 2)

• Locative Points of Interest: Settlements, Buildings, Vege-
tation, Boats, Chests

• Resources: Ore, Berries, Water

• Virtual Characters:

– By Profession - Smithy, Cooks, Kings, Knights
– By Species - Humans, Birds, Monsters, Dragons,

Wolves
– By Relationships - Parent, Child, Spousal
– By Physical Appearance - Arm length, head size, torso

width, etc.

• Events: Earthquakes, Invasions, Siege, Theft

The knowledge base informs the game’s procedural gen-
eration by putting constraints on the generation. For exam-
ple, if the knowledge base states that a dragon lives near
Area0, then the world generation knows it must create a
dragon’s den in an area adjacent to Area0. This allows for
thematic consistency across areas and for information about
the game’s plot to be maintained, enabling larger, multi-area
storylines.

Method
The designed story engine is responsible for defining the
physical features and elements contained in each area, and
so also constitutes a large part of world generation. Addi-
tional responsibilities for the story engine include generating
historical information about the game world and populating
the game world with characters. Therefore, the story engine
has been divided into multiple distinct generators.

To assist in explaining the functionality of our system, we
use the running example of generating a quest involving the
player fighting a dragon that has been terrorizing nearby vil-
lages. We walk through the creation of this region and the
selection of the quest across generators from the ground up.

We use an iterative world-story generation system. First, a
terrain is generated (e.g. a mountain), with some high level
history (e.g. a mountain village). Next, a story is selected
to fit the world (e.g. the selection of a dragon quest). This
selected story then adds further constraints on future world
or terrain generation (e.g., a dragon’s cave must be gener-
ated by the terrain generator, or homes in the region must
be burnt down). This iterative world-story generation was
chosen due in part to the vision of creating emergent stories
from a simulation of the game world and its characters.

The separate generators by task, namely, the area and ter-
rain generation, world history generation, and narrative and
quest generation, have been illustrated in Fig. 3. Charac-
ter generation is done by the quest and history generators.
The generators work together to create each new game area,
feeding information from one part of the system to the next
to generate different aspects of the area. The flow of knowl-
edge and information can be seen in Fig. 3. The triggers for
the generators have been depicted as edge labels on the di-
agram. This section presents the current implementation of
the terrain generator and describes in further detail the sys-
tem design and intent of each of the generators introduced
above.

Terrain Generation
When the player enters a new area, our system runs to de-
fine the area; this begins with terrain generation. The terrain
generator outputs predicate-form definitions of the area’s
biome, natural landscape features, preliminary information
about connecting areas, and any other high-level terrain def-
inition information required.

isArea(Area0);
hasBiome(Area0, forest);
hasFeature(Area0, trees);
hasFeature(Area0, lake);
hasFeature(Area0, boulders);
isArea(Area1);
hasBiome(Area1, mountain);
isUndefined(Area1);
isConnected(Area0, Area1);
isArea(Area2);
hasBiome(Area2, quarry);
isUndefined(Area2);
isConnected(Area0, Area2);

Code 1: Example output of the terrain generator grammar.
The forest biome, region Area0, was generated adjacent to
the mountain region, Area1, and a quarry biome, Area2,
which our grammar deems as valid neighbouring biomes.

The Terrain Generator utilizes Tracery (Compton, Fil-
strup, and others 2014), a CFG authoring tool that is in-
tended primarily for use in text generation. Tracery afforded
us with a grammar (albeit used in a non-traditional way) to
define and assert the predicates and rules required to de-
scribe the game’s terrain features that the BlastBit system
requires.

Our generator first defines a biome that constitutes a gen-
eral flora and fauna type – for instance, a forest or a moun-
tainous region. Biomes are used to ensure that diverse en-
vironments can be generated and that consistency between
adjacent areas is maintained. When defining a region, the
generator either begins with a biome at random (if it is defin-
ing the first region in the world) or a predefined biome type
(if it is defining a region adjacent to or following one that is
already defined). Our grammar controls the adjacency rules
between biomes ensuring that biomes generated adjacent to
the region are realistic. For instance, a desert may not gener-
ate next to an ocean. Code 1 shows an example of the terrain
generator’s output.

Further, we use the Generate-and-Test methodology (To-
gelius et al. 2011) to generate a variety of possible neighbors
using our CFG system, and select one based on constraints
from the story-engine (for instance, selecting a neighboring
biome that allows for a dragon’s cave either in this region,
or one at a specified neighboring distance from this one).
For instance, while it may be possible for the CFG to
generate an ocean next to a forest, our system could select
either the output containing a mountain biome (to allow
for the dragon’s cave in this biome), or another forest

biome (eventually allowing for a mountainous biome within
a specified distance of, say, 3 biomes from the burnt village).

{"forest": [
"hasBiome(AreaX, forest)",
"#forest_features#",
"#forest_connections#"],

"forest_features": [
"#trees#",
"#brush_chance#",
"#boulders_chance#",
"#lake_chance#",
"#valley_chance#"],

"brush_chance": ["#brush#", ""],
"trees": ["hasFeature(AreaX, trees);"],
"brush": ["hasFeature(AreaX, brush);"],
"forest_connection": [

"isArea(AreaY);"
"hasBiome(AreaY, #f_adj_biome#);",
"isUndefined(AreaY);",
"isConnected(AreaX, AreaY);"],

"f_adj_biome":
["forest", "mountain",

"grasslands", "quarry"]
...}

Code 2: Code snippet from terrain-generation grammar re-
sulting in the output shown in Code 1

In the output from our system in Code Snippet 1, the gen-
erator randomly assigned a forest biome to Area0. From
there, the grammar expands a list of features available in for-
est biomes to choose which features can be found in Area0.
In this case: trees, a lake, and boulders. This functionality
will be expanded in the future to define resources available
in the area, such as water, timber, and berries. Next, the ter-
rain generator defines the biomes for adjacent regions. In
Code 1, a mountain and a quarry were defined as adjacent
regions to the forest. These adjacent regions are marked as
“undefined” to let the system know that they must be gen-
erated further once the player leaves the current region and
moves to the next. This allows us to further constrain our
generation based on what the player discovers in the forest.
Finally, the predicates output from the terrain generator is
passed to the high-level history generator. Additionally, the
predicates are taken as input by the game engine, that gen-
erates the geometric layout of the area and the locations of
features within it.

High-Level History Generation
The high-level history generator is similar to the terrain gen-
erator but defines human-made structures rather than land-
scape features. Examples of definitions created in this gen-
erative step include those for settlements, buildings, soci-
etal histories such as war and trade, individual characters,
and specific occupational and personal information about the
generated characters.

While a CFG-based approach may have met many of the
High-Level History Generator’s requirements, many of the
predicates it would generate are dependent on multiple ex-
isting predicates. For example, for a fisherman to generate,
there must exist a town, and that town must trade in fish. Au-
thoring a CFG that encodes these requirements may quickly
become overly-complex and unwieldy. Other design consid-
erations included simulating historical events and resource
movement between settlements, though that level of detail
was considered unnecessary for our purposes. Therefore, we
decided on a design that reasons over existing predicates to
generate the new predicates that describing these human-
made features in the game world.

In our running example, the current area has been defined
as a forest containing trees, a lake, and boulders. Because
this area contains a source of water and is a temperate
region, the high-level history generator reasons that a
settlement here is likely and creates the new predicates
isSettlement(Town0) and contains(Area0, T own0).
From here, the generator continues to define additional,
more specific information about the settlement such as the
resources it trades in, the individual buildings that exist in
it, and who the occupants of those buildings are. In our
example, one of the buildings created is occupied by a
fisherman, as the town trades in fish and is near a lake.
This generation will continue until the area is sufficiently
defined or until no more inferences can be made. A partial
example output of this generative step can be seen in Code 3.

isSettlement(Town0);
contains(Area0, Town0);
tradesIn(Town0, timber);
tradesIn(Town0, fish);
isBuilding(House0);
contains(Town0, House0);
species(Person0, human);
profession(Person0, fisherman);
livesIn(Person0, House0);
...

Code 3: Example output of the high-level history generator
Once a history of the area and definitions of its inhabitants

have been created, a preliminary model of the area’s contents
exists and the Narrative Generator can select a story for the
area.

Narrative Generator
The narrative generator uses the predicates generated by
the previously-discussed generators (shown in Code 1 and
Code 3) to generate a quest for the player. The generator can
ensure that the selected quest fits with the overarching story
arc the player is currently participating in.

The Narrative Generator generates a story for the new area
by manipulating “plot threads”. When a plot thread is re-
quested for a region, the generator either chooses from a list
of existing, open plot threads from previous regions or cre-
ates a new plot thread that suits the given region. Each new

Figure 4: An authored quest template used to select new or
open plot thread. Events are partially ordered.

plot thread is instantiated from a list of designer-authored
quest templates.

While authoring the quest template, the designer must in-
clude preconditions (in the form of predicates) that must be
met in the current world state for events in the world to oc-
cur. We define our quest template to be a tree-structure rep-
resentation of a quest. Nodes in the tree are events that can
occur in the region given the preconditions for the same have
been met. This activation of template nodes is similar to nar-
rative research done by Riedl et al. (2011) using PetriNets.
The algorithm will detect when a region can be activated
based on meeting the preconditions for the region or narra-
tive allowing us to balance authorability against expressive
generation of content.

The predicates of the quest template are generic (for in-
stance, it defines that a house must exist to be on fire but
doesn’t specify which house). An example of such a quest
template has been depicted in Fig. 4. Once an event occurs,
the player may choose to influence the outcomes and future
events of the story; expected interactions are represented by
forks in the quest template’s tree.

Events in the quest templates are partially ordered, for
instance, the player will not encounter the dragon without
first being warned of it in a prior region. This has been
depicted in Fig. 4 where the player first encounters a burning
home, then speaks to townspeople and hears of a dragon.
Eventually, the player may traverse to an adjacent region
with a dragon’s den, where the dragon can be fought. These
partially-ordered constraints are also returned to the terrain
and high-level history generator. For instance, the history
generator now knows that one of the regions connecting to
Area0 in the future could generate townspeople that have
been tormented by the dragon and communicate the same

to the player. Additionally, the terrain generator knows that
in the future, once other preconditions have been met, a
dragon’s den must be generated high in the mountains. This
further restricts the generation in future unexplored regions.

hasFeature(Area, lake)
adjacent(Area, adjacentArea)
hasBiome(adjacentArea, mountain)
contains(Area, town)
isSettlement(town)
contains(town, house)
isBuilding(house)

Code 4: An example of the prerequisites for the first event in
the quest template depicted in Fig. 4

In our example, Area0 is the first area created, and there
are no existing plot threads that can be applied. Therefore, a
new plot thread must be created. To select the quest template
that will be used to create the new plot thread, the Narrative
Generator searches through a list of available authored quest
templates whose preconditions are met by the current world
definition. From this list, the Narrative Generator randomly
selects a quest template, favouring those which have not re-
cently been used to create a previous plot thread. In this case,
it begins the hero’s journey by selecting the dragon quest.
It should be noted, that the narrative generator may choose
to start another quest template even if an earlier one is in-
complete. This may be seen as necessary, for instance, if the
predicates of the world do not currently support an existing
quest. Thus, the player may be partaking in more than one
quest at a time.

From the perspective of the human designer, a single
event, in this case, that of the house burning down, may be
used in several quest templates. In one quest, the player may
find out that the bandits in the area are responsible, in an-
other, it could be the dragon. In the future, we will attempt
to design an authoring tool that will allow for events to be
tagged with a variety of quests, and accordingly, procedu-
rally generate the characters or locations involved.

Low-Level History Generation
Low-level history generation is the final step in the story en-
gine’s generation of the area. The purpose of low-level his-
tory generation is to modify the area to better fit the plot
thread selected by the story generator. This generator works
backwards to create explanations for why those objects exist
in the world and how they affect it. Since the selected plot
has defined events that will happen and objects that must
exist, the generator will add those objects to the world gen-
erated so far. This chain of reasoning continues until the area
definition makes sense in the context of the objects that were
added during story selection.

The low-level history generator also serves the purpose of
generating history on-demand to flesh out an existing world.
This is useful for satisfying Blast Bit’s goal of allowing the
player to ask NPCs questions about the world’s history.

To continue with the dragon quest example, since a
dragon exists, the generator will reason that a nearby vil-
lage fears it. If a village fears something, it may build forti-
fications. These fortifications are added to the region. Addi-
tionally, NPCs living within a range of the dragon on the
map will start to mention their fear of the dragon to the
player, giving the player breadcrumbs as to what to expect.
Once this history has been generated, the player can then ask
NPCs of the region questions regarding why a house was de-
stroyed, or how fortifications were broken down, improving
the explainability of the generators.

For this generation, we intend to use an in-house lock-
and-key logic programming language developed by Blast
Bit. The predicates of the world are described as symbols
that can be defined as a combination of keys. The precondi-
tions in the story states are represented as locks and fulfilling
these preconditions unlock new keys affecting the availabil-
ity of our graph and change in story state.

We are excited about the capability of this generator to
add to the explainability (Zhu et al. 2018) of the world. The
output from this generator will describe a loosely built his-
tory for our world that can be used to explain the reasons for
the procedurally generated content.

Discussion and Future Work

We were asked to design a system where the game envi-
ronments, characters, and overarching story could be pro-
cedurally generated for increased replayability. Given these
requirements, we were able to model a system architecture
that was able to meet their needs.

The terrain generator component of the system was de-
veloped using a Generate and Test constrained, CFG-based
approach based on Tracery’s grammar system. For the High-
Level History Generation and the Story Selection system a
logic programming approach was selected. For the Narra-
tive Generator an authoring language, using the plot thread
approach described earlier is being developed. This will al-
low for the design quest templates by human designers and
authors, allowing them to communicate their goals to the
Drama Manager.

For the Low-Level History generation, we will be con-
tinuing development using the in-house logic programming
language developed by BlastBit. This generator works back-
wards to add explainability to the world, describing reasons
for the existence of objects, or events added to the world by
the PCG generators. This approach, when fully implemented
will satisfy the organization’s goal of allowing the player to
converse with NPCs, asking questions or reasoning about
the state of the world.

A limitation of the world-first model we have designed is
that the story generator focuses on modifying or fitting each
story template to the generated world. Flipping this model
to a story-first design, where a narrative is first generated
then a world is created to fit the story, may allow the authors
and game designers more freedom to focus on pacing and
narrative design in the story generator.

References
Adams, T., and Adams, Z. 2006. Dwarf fortress.
Azad, S.; Xu, J.; Yu, H.; and Li, B. 2017. Scheduling live in-
teractive narratives with mixed-integer linear programming.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment, volume 13.
Black, J. B., and Wilensky, R. 1979. An evaluation of story
grammars. Cognitive science 3(3):213–229.
Bosser, A.-G.; Cavazza, M. O.; and Champagnat, R. 2010.
Linear logic for non-linear storytelling. In 19th European
Conference on Artificial Intelligence, 713–718. IOS Press.
Brevik, D. 1997. Diablo (series).
Compton, K.; Filstrup, B.; et al. 2014. Tracery: Approach-
able story grammar authoring for casual users. In Seventh
Intelligent Narrative Technologies Workshop.
Dabral, C., and Martens, C. 2020. Generating explorable
narrative spaces with answer set programming. In Proceed-
ings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, volume 16, 45–51.
Doran, J., and Parberry, I. 2011. A prototype quest generator
based on a structural analysis of quests from four mmorpgs.
In Proceedings of the 2nd international workshop on proce-
dural content generation in games, 1–8.
Dormans, J., and Bakkes, S. 2011. Generating missions and
spaces for adaptable play experiences. IEEE Transactions
on Computational Intelligence and AI in Games 3(3):216–
228.
Dormans, J. 2011. Level design as model transformation:
a strategy for automated content generation. In Proceedings
of the 2nd International Workshop on Procedural Content
Generation in Games, 1–8.
Evans, R., and Short, E. 2013. Versu—a simulationist sto-
rytelling system. IEEE Transactions on Computational In-
telligence and AI in Games 6(2):113–130.
Gellel, A., and Sweetser, P. 2020. A hybrid approach to pro-
cedural generation of roguelike video game levels. In Inter-
national Conference on the Foundations of Digital Games,
1–10.
Grinblat, J., and Bucklew, C. B. 2017. Subverting historical
cause & effect: generation of mythic biographies in caves of
qud. In Proceedings of the 12th International Conference on
the Foundations of Digital Games, 1–7.
Grinblat, J., and Bucklew, C. B. 2020. Warm rocks for cold
lizards: Generating meaningful quests in caves of qud. In
Experimental AI in Games Workshop (AIIDE 2020).
Hendrikx, M.; Meijer, S.; Van Der Velden, J.; and Iosup, A.
2013. Procedural content generation for games: A survey.
ACM Transactions on Multimedia Computing, Communica-
tions, and Applications (TOMM) 9(1):1–22.
Horswill, I. D. 2018. Catsat: A practical, embedded, sat lan-
guage for runtime pcg. In Fourteenth Artificial Intelligence
and Interactive Digital Entertainment Conference.
Martens, C.; Ferreira, J. F.; Bosser, A.-G.; and Cavazza, M.
2014. Generative story worlds as linear logic programs. In
Seventh Intelligent Narrative Technologies Workshop.

Nelson, M. J., and Smith, A. M. 2016. Asp with applications
to mazes and levels. In Procedural Content Generation in
Games. Springer. 143–157.
Persson, M., and Bergensten, J. 2011. Minecraft.
Riedl, M. O., and Bulitko, V. 2013. Interactive narrative: An
intelligent systems approach. Ai Magazine 34(1):67–67.
Riedl, M.; Li, B.; Ai, H.; and Ram, A. 2011. Robust and
authorable multiplayer storytelling experiences. In Seventh
Artificial Intelligence and Interactive Digital Entertainment
Conference.
Smith, G.; Gan, E.; Othenin-Girard, A.; and Whitehead, J.
2011. Pcg-based game design: enabling new play experi-
ences through procedural content generation. In Proceed-
ings of the 2nd International Workshop on Procedural Con-
tent Generation in Games, 1–4.
Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2011. Search-based procedural content generation: A
taxonomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games 3(3):172–186.
Van Der Linden, R.; Lopes, R.; and Bidarra, R. 2013. Proce-
dural generation of dungeons. IEEE Transactions on Com-
putational Intelligence and AI in Games 6(1):78–89.
Zhu, J.; Liapis, A.; Risi, S.; Bidarra, R.; and Youngblood,
G. M. 2018. Explainable ai for designers: A human-
centered perspective on mixed-initiative co-creation. In
2018 IEEE Conference on Computational Intelligence and
Games (CIG), 1–8. IEEE.

