
AgentCraft: An Agent-Based Minecraft Settlement Generator

Ari Iramanesh, Max Kreminski
University of California, Santa Cruz
{airanman, mkremins}@ucsc.edu

Abstract

AgentCraft is an entry for the Generative Design in Minecraft
(GDMC) AI Settlement Generation Competition, including
the optional Chronicle Generation challenge. It makes use of
an agent-based simulation to organically produce a plausible
settlement and a written history of the settlement’s develop-
ment. Uniquely, AgentCraft utilizes the HTTP Server version
of the competition framework to show the agents constructing
the settlement in real time—a visual technique that can’t be
achieved with the earlier MCEdit framework. In this paper,
we aim to provide a point of reference for future agent-based
settlement generators by describing how our competition en-
try works and discussing the benefits and downsides of the
agent-based approach. Additionally, we propose a new op-
tional challenge for the GDMC competition, centering on the
development of settlement simulations whose inhabitants can
be directly observed or interacted with by the player.

Introduction
This paper presents AgentCraft, a Minecraft settlement gen-
erator that uses agent-based simulation to create a plausi-
ble settlement with adaptations for local terrain in a bottom-
up way. It was created as an entry to the Generative De-
sign in Minecraft (GDMC) AI Settlement Generation Chal-
lenge (Salge et al. 2020), which scores entries based on
four high-level criteria: Adaptability, Functionality, Narra-
tive, and Aesthetics. In the 2021 iteration of the competi-
tion, AgentCraft took second place out of 20 total entries and
earned the second-highest Narrative score of any GDMC en-
try to date (just behind the overall winner in 2021.)

Though not the only competition entry to use an agent-
based approach, AgentCraft is (to the best of our knowledge)
unique in its incorporation of lightweight social simulation
elements, loosely inspired by the social simulation frame-
work Talk of the Town (Ryan and Mateas 2019). Further-
more, AgentCraft goes beyond the scope of GDMC by ren-
dering the settlement’s development (including the move-
ment and interaction of the agents that created the settle-
ment) in real time, allowing the player to watch the settle-
ment develop before their eyes.

Copyright © 2021for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0).

Figure 1: An example settlement generated by AgentCraft,
showcasing a variety of buildings connected by roads and
built from appropriate materials for the local environment.

Our goals in this writeup are twofold. First, we aim to
provide a reference description of an agent-based Minecraft
settlement generator that can serve as an inspiration and
jumping-off point for future agent-based competition en-
tries. To this end, we attempt to document our approach
more thoroughly than other competition entries have done
to date and provide a brief accounting of significant difficul-
ties we encountered in the process of developing our gener-
ator. Additionally, we provide links to a GitHub repository
containing the complete AgentCraft source code1 and video
documentation of the generator in action.2,3

Second, beyond the current explicit goals of the GDMC
competition, we believe that a compelling new challenge
might be found in the live simulation of settlement inhab-
itants that players can observe or even interact with in real
time. To that end, we suggest that the GDMC competition
could adopt a new optional “Liveness Challenge” (in the
same vein as their current Chronicle Generation challenge)
oriented around this goal.

1https://github.com/aith/agentcraft
2https://www.youtube.com/watch?v=Gc5h54Bus k
3https://www.youtube.com/watch?v=DGLiWOxWLig

https://github.com/aith/agentcraft
https://www.youtube.com/watch?v=Gc5h54Bus_k
https://www.youtube.com/watch?v=DGLiWOxWLig


Figure 2: An aerial view of the road network in a generated
settlement, showing how roads conform to the terrain and
connect buildings in an organic-looking way.

Starting the Generator
The AgentCraft generator runs as a CLI, with a few optional
flags. Upon starting, the generator searches for a suitable set-
tlement location within the user-specified boundaries, or the
build area. This location must:

• Be on land
• Have water nearby (otherwise a well will be placed)
• Be traversable, i.e., flat and unobstructed enough to be

walked across
• Have suitable locations for a building, a road, and the ini-

tial agents
• Be at minimum 32x32 blocks in size

If a valid build location was found, the generator will cre-
ate a small cast of agents, an initial building, and the first
node of a road network. It will then launch an iterative set-
tlement construction process that repeatedly steps through
each agent and performs appropriate actions based on the
current state of the settlement.

Information about the build area is stored as a grid of
nodes overlaid on the surface of the world. Each node is
composed of nine surface blocks, arranged in a 3x3 man-
ner. When the generator requires information about a node,
it inspects those nine tiles to classify the node as belonging
to one of several high-level categories. This information is
used in many ways, including for agent-based pathfinding
and road network placement.

Roads
Traffic-Based Placement
Real-world settlement traversal and design revolves around
roads. Real-world buildings are built along roads, and foot-
path-based roads are typically built for the purpose of facil-
itating traversal through a popular route. AgentCraft repli-
cates these features in order to achieve realism of simula-

tion. To accomplish this, each node stores a prosperity value
that measures how busy that node is. A node’s prosperity in-
creases by a task-specific amount when an agent performs an
action within that node, and decays over time. After a node
reaches a certain prosperity threshold, the generator will de-
cide whether to generate a road from that node. Agents will
also favor roads when pathfinding to a destination, so that
the agents and their roads work cohesively. This synergism
of behavior fulfills the positional realism of roads.

Our prosperity-based approach to road generation is based
on the one used in TownSim (Song and Whitehead 2019),
which in turn was inspired by a survey of road network
patterns present in complex real-world cities (Batty 2007)
and earlier work on the generation of naturalistic terrain-
adaptive road networks (Emilien et al. 2012). Additional re-
lated work on road network generation is surveyed by Sme-
lik et al. (2014) and Kelly and McCabe (2006), as well as in
the TownSim paper.

Traversability and Efficacy-Based Placement
Real-world road design aims to satisfy several requirements.
Generally, roads are expected to:

1. Minimize the user’s travel time to a destination
2. Be connected to pre-existing roads
3. Be traversable
4. Avoid redundancy with other roads

For the purposes of realism, AgentCraft aims to fulfill
each of these requirements. Requirements (1) and (2) tend
to conflict in practice, since the fastest path to a destina-
tion is simply a straight line to the destination, or the path
that minimizes the Euclidean distance from the start to the
destination. To fulfill both (1) and (2) in a reasonable and
realistic-looking manner, when the generator decides to link
a particular node to the road network, it first attempts to do
so by generating a straight-line path from the target node
to the nearest road-type node. However, this often doesn’t
lead to paths that satisfy Requirement (3): buildings, trees,
or steep slopes can intercept these paths.

If the desired straight-line path is not traversable, the gen-
erator will first attempt to split this straight line into two con-
nected linear paths to get around an obstacle. If one or both
of the resulting split paths are themselves not traversable,
the generator will then perform a series of raycasts outward
from the target node in a circle to identify a “good enough”
plausible path that still connects the target node to the road
network. If no traversable path can be found in this manner,
the generator gives up on connecting this particular node to
the road network for now, though it may try again later once
the road network has expanded further.

Traversability checks involve two key components. First,
to be traversable, a path must never require an agent to
move from one block to another when the change in height
between the two blocks is greater than the designated
agent jump height (by default, one block.) Second, to be
traversable, a path must not move through any nodes that
have been classified as non-traversable due to the types of
blocks they contain (for instance, water or lava blocks.)



Figure 3: The initial road network can’t be extended in a
straight line to reach the nearest tree, so we first find a route
around the building, extend the road network slightly, and
construct a straight-line road to the tree from the new exten-
sion.

The combination of these checks and algorithms is com-
putationally more expensive than some simpler road net-
work generation algorithms, but results in an iterative and
organic road system that builds on top of itself, effectively
replicating real-life road systems—particularly those found
in older cities with less-than-modern city-planning origins.

Agents
Agent behavior in AgentCraft is context-free and local to
each agent: when deciding what to do next, agents do not
consider past experiences or (except in the case of specif-
ically social actions) the state of other agents. The agents
have seven different actions, or motives, that they choose
from based on a set of rules, similar to cellular automata. The
behaviors that are necessary to retain agent “health”, such as
gathering water or getting rest, are decided by non-stochastic
rules. The decision to grow or log a tree is stochastic, unless
there are no trees nearby.

Here are all of their possible actions, in order of priority:

1. Socialize, if another willing agent is in the same node

2. Rest in a building, if tired

3. Drink from a water source, if thirsty

Figure 4: Several screenshots of agents as they appear in
the world, carrying out their business. During the settlement
generation process, agents visibly walk from place to place,
collect resources, and interact with other agents.

4. Propagate to produce a new “child” agent, if lover-lover
interaction threshold met with another colocated agent

5. Build using shared resources, if enough resources exist

6. Log OR grow a tree, picking stochastically

7. Grow a tree if no trees exist within a fixed radius

Notably, all actions except socializing require movement
to a destination. This works synergistically with the prosper-
ity system, which results in roads being generated often and
in the places where agents go most (hearkening back to road
efficacy.) Agent pathfinding is accomplished via A* search
on the two-dimensional grid of nodes that AgentCraft over-
lays on the surface of the world.

The socialize action occurs when two otherwise unoccu-
pied agents are positioned in the same node. There are three
possible relationship types for the agents: lovers, friends,
and enemies. All of these are mutual relationships, with the
relationship between each pair of agents being chosen at
random. If an agent has performed enough socialize inter-
actions with their lover and neither has any higher-priority
actions to perform, they will both pathfind to a building and
propagate to produce a new “child” agent. Socialize inter-
actions between friends and enemies affect the interacting
agents’ happiness, but in the current version of AgentCraft,
happiness has no visible effect on the agents.

Agents are rendered as Minecraft armor stand entities,
which offer expressive options that allow them to visually
represent Minecraft player models. Each agent carries a



motive-specific item in one hand (indicating to the player
what action this agent is currently performing) and a ran-
domly chosen agent-specific “favorite item” in the other.
An agent’s clothing is colored based on a randomly-chosen
color representing the settlement as a whole, while their
shoes represent the overall prosperity of the settlement (with
agents from richer settlements having higher-quality shoes.)

Optimizations
Because the GDMC competition imposes a 10-minute cap
on the time that a generator may take to produce a settle-
ment, and because we perform fairly in-depth simulation of
agent activity, the implementation of AgentCraft required
many unexpected optimizations to be performed. Optimiza-
tions were especially needed for large build areas, such
as the 1000x1000 build area used as the upper bound for
build area size in the 2021 iteration of the GDMC competi-
tion. On a 4-Core Thinkpad T480, given a 1000x1000 block
build area, the retrieval of world data from the HTTP Server
competition framework alone took 5 minutes—leaving only
5 minutes for the generator to produce a plausible settle-
ment. This was not an easy target for us to hit, given that
AgentCraft constructs settlements iteratively through the ac-
tions of agents over time.

The following optimizations were necessary to make the
generator produce a complete and plausible settlement in un-
der 10 minutes:

1. Pre-compute legal A* paths for agents on startup
2. Recompute legal A* paths when a change in a block leads

to a change in reachability from surrounding blocks, in a
depth-limited fashion

3. Lazy-load block and type information from the HTTP
server on a per-node basis

4. Store block data in an internal buffer in the generator,
rather than repeatedly requesting it from the Minecraft
world

5. Disable mid-simulation rendering of all changed blocks
and agents, if desired
Optimization 1 entails calculating inter-traversability be-

tween blocks and their neighbors. This guarantees that
pathfinding to an unreachable location fails immediately.
Without this, A* would iterate through every block to see
if a path is attainable; in a 1000x1000 build area, around
1,000,000 surface blocks would have to be searched every
time an agent attempted to go to an unreachable location.

Trickily, the reachability of specific blocks has to be re-
calculated whenever a block’s traversability is changed in
the world—for instance, when an agent places a building
or chops down a tree. Recalculating traversability for ev-
ery block would be enormously expensive, given how many
times each block might be changed during the simulation.
For this reason, we implemented Optimization 2, which
limits recalculation of block traversability to only those
blocks whose reachability is known to have changed. Fur-
thermore, we made this computation depth-limited, account-
ing for the furthest distance that an agent could actually
reach from their current location.

Optimization 3 ensures that node data structures (which
cache information about specific parts of the build area’s
surface) are only created when needed for decision-making.
Each node stores a fairly large amount of information, so
this helps to reduce memory usage during simulation.

Optimization 4 separates the generator’s model of the
Minecraft world from the live, player-facing version of the
Minecraft world after the generator starts up. Unfortunately,
this means that a modification to the Minecraft world during
the simulation may lead to incoherent results. Because this
could potentially compromise the illusion of the settlement
as a real, living and responsive place, we would like to find
a way for the generator to receive local updates to the ac-
tual Minecraft world during simulation; for the time being,
however, we leave this to future work.

Optimization 5 is available as a CLI option for
AgentCraft users. It simply holds off all simulation-to-world
rendering until the generator completes. Live rendering of
agent behavior and block updates during simulation is one
of AgentCraft’s key features, so disabling it runs counter
to our intended player experience—but for the time-limited
GDMC competition, which does not take live rendering
into account during judging, this optimization is essentially
mandatory.

Chronicle Generation
GDMC currently offers one optional bonus challenge for
settlement generators: the Chronicle Challenge, which in-
volves generating a written history, or chronicle, of the gen-
erated settlement. To date, most competition entries have not
attempted to address this optional challenge: of the 20 en-
tries to the 2021 iteration of the competition, only three (in-
cluding AgentCraft) attempted to participate in the Chroni-
cle Challenge.

Since AgentCraft creates a settlement incrementally
through agent behavior, producing a chronicle was an easy
fit for our approach. In the current version of AgentCraft,
whenever an agent performs an action, there is a chance that
the action will be described in the chronicle. To add some
light variation to the generated text, we choose randomly be-
tween two potential sentence templates for each high-level
action type; swap agent names into these templates where
appropriate; and add random adjectives (drawn from a list)
to specific fixed points in most of these sentences. These ac-
tion descriptions are then written to a Minecraft book in the
order that the actions were performed (Fig. 5). In the future,
a lightweight text generation tool such as Tracery (Compton,
Kybartas, and Mateas 2015) could be used to add procedural
variation to these descriptions. Future attempts at extending
the chronicle generation components of AgentCraft could
also borrow methods from NaNoGenMo, as surveyed by van
Stegeren and Theune (2019).

In our original plan for AgentCraft, we intended to gen-
erate per-agent diaries that gave separate and sometimes-
conflicting accounts of the same events in the settlement’s
history, inspired loosely by the biased per-character percep-
tions of narrative in Why Are We Like This? (Kreminski et al.
2020a,b). In practice, this proved to be out of scope for our



Figure 5: A page in a generated Chronicle describing three
various events in time.

Figure 6: A group of generated Chronicles for a settlement
procedurally named Verdictland.

entry this year; consequently, we leave per-agent diary gen-
eration to future work.

Building Placement

In some ways, using agents to create settlements signifi-
cantly increases the complexity of settlement generation—
which is already a difficult task on its own. For this reason,
we chose to strategically limit complexity in other areas,
especially in the potentially thorny area of building gener-
ation. Rather than procedurally generate new building ge-
ometry from scratch, our agents construct buildings based
on human-authored schematics. Nonetheless, we do lightly
process these schematics to allow some flexibility and varia-
tion in which blocks are used to construct them. This entails
allowing “air” blocks in schematics to be replaced by blocks
already in the world; wood blocks to change based on the
type of logs that agents have gathered; and directional blocks
(such as staircases) to adjust their directionality based on the
rotation of the building. In addition, to make these buildings
sit correctly on uneven terrain, we generate a flat scaffolding
foundation underneath them.

Liveness: A New Challenge
In the process of developing AgentCraft, we rapidly realized
that it was fun to watch the agents go about their business in
the world and construct a settlement in real time—maybe
even more fun than to walk around the resulting settlement
once the agents had completed their task. Others who have
seen the agents in action (including the GDMC organizers)
seem to agree: people consistently find the liveness of agent
behavior compelling.

In light of this reaction, it stands out to us as unusual that,
even in building-focused games like Minecraft, non-player
characters that attempt to systematically change their envi-
ronment over time are almost unheard of. In AgentCraft, our
simulated agents are not fully realized NPCs, because the
player cannot meaningfully interact with them—but in prin-
ciple, nothing seems to preclude the possibility of further
developing AgentCraft-like agents into NPCs that can inter-
act with the player through (at least) trade and combat, much
like the villagers of vanilla Minecraft.

With this goal in mind, we propose a new optional chal-
lenge for the GDMC competition, centered on liveness: the
creation of live settlement simulations whose inhabitants can
be observed or even interacted with by the player. Like the
current Chronicle Generation bonus challenge, a prospec-
tive Liveness Challenge might serve as an optional objective
that favors generators with a deeper understanding of the ar-
tifacts they create—and thereby steers the community as a
whole toward better orchestration (Liapis et al. 2018) across
multiple distinct facets of generative design and game AI.

Conclusion
AgentCraft’s success (taking second place overall in the
2021 GDMC competition) indicates that the use of social
agents to create a settlement can result in organic design,
if done with care. By integrating the simulation of agent
needs with a prosperity-based approach to road network
generation, AgentCraft generates realistic-seeming road net-
works that adapt to local terrain and resource availability.
Additionally, an agent-based approach to settlement gener-
ation makes first-pass chronicle generation relatively easy
and provides lots of hooks for deeper chronicle generation
going forward, especially if integrated with a slight deepen-
ing of social simulation. However, agent-based approaches
to settlement generation come at a performance and devel-
opment cost that grows with simulation scale—necessitating
more optimization effort than might otherwise be required
and limiting the amount of time and energy that can be spent
on other aspects of settlement generation, such as procedural
building design.

Nonetheless, we find that generated settlements are made
more interesting when you can directly witness the pro-
cess by which they were constructed—especially when this
process involves the live simulation of believable charac-
ters. For this reason, we suggest that future iterations of
the GDMC competition might want to adopt a new optional
bonus challenge centered on the development of live settle-
ment simulations—in which plausible settlements go hand
in hand with the plausible NPCs that live inside them.



References
Batty, M. 2007. Cities and Complexity: Understanding
Cities with Cellular Automata, Agent-Based Models, and
Fractals. MIT Press.
Compton, K.; Kybartas, Q.; and Mateas, M. 2015. Trac-
ery: an author-focused generative text tool. In Interna-
tional Conference on Interactive Digital Storytelling, 154–
161. Springer.
Emilien, A.; Bernhardt, A.; Peytavie, A.; Cani, M.-P.; and
Galin, E. 2012. Procedural generation of villages on arbi-
trary terrains. The Visual Computer 28(6): 809–818.
Kelly, G.; and McCabe, H. 2006. A survey of procedural
techniques for city generation. ITB Journal 14(3): 342–351.
Kreminski, M.; Dickinson, M.; Mateas, M.; and Wardrip-
Fruin, N. 2020a. Why Are We Like This?: Exploring writ-
ing mechanics for an AI-augmented storytelling game. In
Proceedings of the Electronic Literature Organization Con-
ference.
Kreminski, M.; Dickinson, M.; Mateas, M.; and Wardrip-
Fruin, N. 2020b. Why Are We Like This?: The AI archi-
tecture of a co-creative storytelling game. In Proceedings of
the Fifteenth International Conference on the Foundations
of Digital Games.
Liapis, A.; Yannakakis, G. N.; Nelson, M. J.; Preuss, M.;
and Bidarra, R. 2018. Orchestrating game generation. IEEE
Transactions on Games 11(1): 48–68.
Ryan, J.; and Mateas, M. 2019. Simulating character knowl-
edge phenomena in Talk of the Town. In Game AI Pro 360,
135–150. CRC Press.
Salge, C.; Green, M. C.; Canaan, R.; Skwarski, F.; Fritsch,
R.; Brightmoore, A.; Ye, S.; Cao, C.; and Togelius, J. 2020.
The AI Settlement Generation Challenge in Minecraft. KI-
Künstliche Intelligenz 34(1): 19–31.
Smelik, R. M.; Tutenel, T.; Bidarra, R.; and Benes, B. 2014.
A survey on procedural modelling for virtual worlds. Com-
puter Graphics Forum 33(6): 31–50.
Song, A.; and Whitehead, J. 2019. TownSim: Agent-based
city evolution for naturalistic road network generation. In
Proceedings of the 14th International Conference on the
Foundations of Digital Games.
van Stegeren, J.; and Theune, M. 2019. Narrative generation
in the wild: Methods from NaNoGenMo. In Proceedings
of the Second Workshop on Storytelling, 65–74. Association
for Computational Linguistics.


	Introduction
	Starting the Generator
	Roads
	Traffic-Based Placement
	Traversability and Efficacy-Based Placement

	Agents
	Optimizations
	Chronicle Generation
	Building Placement
	Liveness: A New Challenge
	Conclusion

