

Imaginarium: A Tool for Casual Constraint-Based PCG

Ian Horswill
Department of Computer Science, Northwestern University, Evanston IL

ian@northwestern.edu

Abstract
Constraint programming offers a concise and powerful ap-
proach to a variety of procedural content generation problems
(A. M. Smith & Mateas, 2011). However, it requires consid-
erable technical expertise. No constraint-based PCG lan-
guages come close to Compton’s goal of casual creators
(Compton & Mateas, 2015).
 In this paper, we describe Imaginarium, an interactive en-
vironment for developing ontologies for constraint-based
PCG, targeted toward players of tabletop role-playing games.
The system allows players to interactively describe the ontol-
ogies of their games using an Inform-like English subset, and
explore the spaces of artifacts they generate. While much less
expressive than a full logic programming language, it is quite
competitive in terms of conciseness and readability.

Introduction
Procedural content generation (PCG) systems use genera-
tive rules to explore a space of possible artifacts, be they 3D
models (IDV, 2009), dungeon levels (Toy et al., 1980) or
whole galaxies (Wright et al., 2008). Rule systems can be
embodied through code (Adams & Adams, 2006), machine
learning systems (Summerville, et al., 2018), or constraint
satisfaction systems (G. Smith et al., 2011), among others.
 The technical background involved in constraint satisfac-
tion makes it difficult for non-specialists to build their own
systems. While a number of systems have been developed
targeting end-users for specific problems, such as Mario
level generation (Guzdial et al., 2018; G. Smith et al., 2011),
broad coverage, end-user systems are difficult to develop.
 Imaginarium is a constraint-based PCG tool designed for
use in tabletop role-playing games. It allows users to inter-
actively specify an ontology using a subset of English, then
generate random instances of those objects, rendered as
English descriptions. These objects can be thought of as
constraint-based Mad Libs (Price & Stern, 1974) in that they
involve making random choices for the objects’ different de-
grees of freedom, subject to user-specified constraints.

Copyright © 2019 for this paper by its authors. Use permitted under Crea-
tive Commons License Attribution 4.0 International (CC BY 4.0).

 Imaginarium is heavily influenced by Nelson’s work
on Inform 7 (Nelson, 2006b, 2006a). While ultimately a de-
clarative programming language, the system seeks to lever-
age the affordances of natural language to allow non-pro-
grammers to use it without having first to learn the subtleties
of first-order logic formalization or the deeper subtleties of
answer-set programming (A. M. Smith et al., 2012).
 The user interacts with Imaginarium by typing (or loading
from files) declarative statements about the objects to be
generated, such as “humans are a kind of animal”, “humans
can be blond, brunette, red-head, or anime-haired,” or “sol-
diers are crew-cut.” The user uses these assertions to sculpt
the possibility space of the artifacts to be generated, adding
degrees of freedom with assertions like the first two, and re-
moving them with assertions like the last. It compiles these
ontologies to an SMT language and uses an off the shelf
solver (Horswill, 2018) to randomly generate objects.

Example
Suppose we wanted to generate random cats.1 We might
type something like this:

> imagine a cat

1 There are in fact several cat-based TTRPGs, including the recently Kick-
started second edition of Hanson’s Magical Kitties Save the Day!

Figure 1: Screenshot of the tool in use

This tells the system to generate random cats. It implicitly,
also tells the system that cat is a class of thing, membership
in which is indicated in English using the noun cat. Since,
this is all the system knows about cats, it can say only:

The cat is a cat.

We can remedy this by telling it:

 A cat is large or small.

This tells the system that cats come in two flavors, large and
small, the distinction being indicated using the adjectives
large and small. The system now responds with one of:

 The cat is a large cat.
 The cat is a small cat.

Hitting return repeatedly generate new cats, but they will al-
ways be one of these two. The system interprets the form “a
cat is large or small” as “a cat is always large or small.” If
we want to allow the cats to be neither large nor small, we
can say:

 Undo
 Cats can be large or small.

We now allow cats whose size is unmarked, but there are
still only three possible cats. So let’s give the system more
degrees of freedom to play with:

Persian, tabby, and Siamese are kinds of cat.

This tells the system Persian, tabby, and Siamese are all
nouns and that they denote subclasses of the class cat. We
can type more statements to tell it about more kinds of cats.
When generating a cat, it will always be of one of the spec-
ified breeds. We might also tell the system:

 Cats are longhaired or shorthaired.
 Cats are grey, white, black, or ginger.
 A cat can be haughty, cuddly, crazy, or Nietzschean.

Which define two mandatory properties (color and coat
length) and one optional personality property, which can be
left unmarked. We can now generate cats such as:

 The cat is a large, shorthaired, white Persian.
 The cat is a longhaired, ginger, cuddly tabby.

However, the first of these is problematic, since Persians are
longhaired by definition. Adding the assertions:

 Persians are longhaired.
 Siamese are shorthaired.
 Siamese are grey.

Prevents the system from generating cats who violate these
constraints. Finally, we name our cats and let them have
ages:

 Cats have a name from cat names.
 A cat is identified as “[name]”.
 Cats have an age between 1 and 20.

The first of these tells the system that all cats have a string-
valued property called “name” that is drawn randomly from
the list in the file cat names. The second tells the system
to describe the cat it using her name rather than the generic
identifier “the cat.” We now get outputs like:

Puck is a Nietzschean, ginger tabby, age 12.
Mr. Muffins is a large, grey, Siamese, age 2.
Rover is a small, white, crazy Persian, age 9.

Finally, we say:

 Cats can love other cats

Which introduces a verb love that represents an anti-reflex-
ive, binary relation. If we now say:

 Imagine five cats

The system will display a set of five random cats, together
with an interactive visualization of the loves relation as a di-
rected graph.

Comparison with traditional logic programming
The foregoing 13 commands are roughly equivalent to the
16-line AnsProlog (Baral & Baral, 2009) program :

entity(1..5).
cat(X) :- entity(X).
cat(X) :- persian(X).
cat(X) :- tabby(X).
cat(X) :- siamese(X).
1 { persian(X) ; tabby(X); siamese(X) }
1 :- cat(X).
1 { age(X, 1..20) } 1 :- cat(X).
1 { name(Cat, Name) : cat_name(Name) } 1
:- cat(Cat).
0 { large(X) ; small(X) } :- cat(X).
1 { long_haired(X) ; short_haired(X) } 1
:- cat(X).

1 { black(X) ; white(X) ; grey(X) ;
ginger(X) } 1 :- cat(X).
0 { cuddly(X) ; haughty(X) ; crazy(X) ;
nietzschen(X) } 1 :- cat(X).
long_haired(X) :- persian(X).
short_haired(X) :- siamese(X).
grey(X) :- siamese(X).
{ loves(X, Y) } :- cat(X), cat(Y).

Using Clingo (Gebser et al., 2010) produces the output:

entity(1) entity(2) entity(3) entity(4)
entity(5) cat(1) cat(2) cat(3) cat(4)
cat(5) long_haired(2) persian(2)
long_haired(3) long_haired(5)
persian(5) short_haired(1) siamese(1)
short_haired(4) grey(1) grey(4)
tabby(3) tabby(4) age(1,7) age(2,2)
age(3,12) age(4,1) age(5,7)
name(1,fido) name(2,fido) name(3,ru)
name(4,chi) name(5,puck) large(1)
small(1) small(2) large(3) large(4)
large(5) small(5) ginger(2) black(3)
ginger(5) cuddly(1) crazy(2) cuddly(3)
crazy(5) loves(1,1) loves(3,1)
loves(4,1) loves(5,1) loves(1,2)
loves(3,2) loves(5,2) loves(3,3)
loves(4,3) loves(1,4) loves(3,4)
loves(5,4) loves(1,5) loves(3,5)
loves(4,5) loves(5,5)

While far less expressive than AnsProlog, Imaginarium
compares favorably in both conciseness and readability
within its domain of competence.
 Moreover, Imaginarium can infer most of the rules for
translating a model into natural language directly from the
syntactic structure of the program text. Other languages
would require additional declarations. These properties, to-
gether with the system’s interactive design, make much
more novice-friendly.

Simplification of Natural Language
Although based on English, Imaginarium interactions are
not true natural language. True NL is both complicated and
ambiguous. Consider, for example, the assertion:

(1) People can be friendly.

Most English speakers would take this to means roughly that
entities of the class people are sometimes, but not always,
friendly. It licenses one to use sentences such as “Chris is

friendly” or “Chris is not friendly.” This is the meaning that
our system applies to the sentential form “Xs can be Y.”
 Now compare this to the assertion:

(2) People can be friends.

Fluent English speakers understand this to mean that pairs
of people can have the property of friendship. It defines an
adjective friends whose domain is pairs of people, and
which is roughly equivalent to the phrasal verb be friends
with, so that (2) might be read as semantically interchange-
able with:

(3) People can be friends with people

Unfortunately, we only understand this because we already
know a great deal about the word “friends” and the concept
of friendship more generally. An English-language learner
who had not yet learned the word friend might hear (2) and
interpret it in terms of the more common schema of (1), ex-
pecting that “friends” is a property of individual people, as
in “Chris is so friends.”
 This introduces the question of whether a system like Im-
aginarium should allow users to use constructions like (2)
that use “X can be Y” to introduce a binary relation instead
of a unary predicate. This would require the system to be
able to use context to distinguish cases (1) and (2). That
context would have to be hard-coded into the system or
manually entered by the user prior to the use of the construc-
tion (2). The user would therefore have to maintain a rela-
tively detailed mental model of what context the system did
and did not understand at a given moment, which would
likely lead to errors and frustration.
 For this reason, the system maintains a relatively direct
relation between syntactic form and underlying semantics,
one not present in real human languages. Nouns and adjec-
tives always denote unary predicates, while verbs always
denote binary relations. Syntactic forms using the auxiliary
“can” (“As can be B”) always indicate possibility without
necessity, while forms with no auxiliaries (“As are B”), or
which use the auxiliary “must” always indicate necessity.

Syntax
The English subset understood by the system is a regular
language (Hopcroft et al., 2006). That is, it uses no con-
structions, such as center embedding, that require the full
power of a context-free grammar. This is partly due to the
limited expressivity of the SMT language to which the com-
mands are compiled. However, the language is also delib-
erately constructed to have sufficient uses of closed-class
words to make it easier to recognize failed attempts and

thereby generate better error messages. For example, in the
sentential form:2

 NP [can | must] BE AdjectiveList

The parser can determine in advance that the NP must be
delimited by the words can or must. Any input that contains
the word can or must followed by a conjugation of the cop-
ula is a match for this pattern, with the NP being all the to-
kens before this substring and the AdjectiveList all the to-
kens after it. Once the parser has parsed at this coarse gran-
ularity, it can parse the NP and AdjectiveList segments.
This allows it to generate more useful error messages than it
might otherwise generate.
 The system allows phrasal nouns, verbs, and adjectives,
meaning that individual concepts can correspond to multiple
tokens in the input stream. This allows the system to accept
concepts such as “being friends with” as verbs, without hav-
ing to have a deep understanding of English syntax. It also
allows users to use freely phrases such as “Lovecraftian hor-
ror”, as in:

(4) A Lovecraftian horror is a kind of monster.

Without having to explain the meaning of either word in iso-
lation. This has the disadvantage of introducing ambiguity,
since some users might actually want to use the words in
isolation:

(5) A horror is a kind of monster.
(6) A horror is Lovecraftian or Trumpian.

If, upon seeing (4), the system entered “Lovecraftian horror”
into its knowledge base as an atomic, phrasal noun, then
upon seeing (5) and (6) it would not know to update its ex-
isting knowledge about Lovecraftian horrors. Therefore, us-
ers must use nouns and adjectives in isolation before com-
bining them. For similar reasons, phrasal nouns and adjec-
tives may not be prefixes of one another.
 Subject to these constraints, the system allows an NP to
be any noun, optionally preceded by any number of modifi-
ers (adjectives or other nouns) and/or a determiner or ex-
plicit quantity, such as:

Cats
A cat
Five scruffy cats
Lovecraftian horror cats
Five scruffy, Lovecraftian horror cats

2 Here NP means, “noun phrase” and “BE,” means some conjugation of the
verb “to be”, aka the copula.

The system does its best to inflect nouns and verbs for num-
ber (singular or plural) based on the standard rules for Eng-
lish inflection patterns, but these can be overridden, either
by adding new rules to a configuration file, or by issuing a
command:

 The plural of Siamese is Siamese.

The built-in syntactic rules of the system use the standard
English verbs be and have, along with the auxiliaries can
and have. User-defined verbs can be any phrase that does
not introduce ambiguity. They currently must be transitive.

Sentential Forms and their Semantics
The system currently understands the follow syntactic forms
for declarations.

𝑆𝑆 can/must 𝑉𝑉 one/many/other 𝑂𝑂
Asserts that the verb 𝑉𝑉 defines a relation between instances
of the classes defined by the NPs 𝑆𝑆 and 𝑂𝑂, i.e. 𝑉𝑉 ∈ 𝑆𝑆 × 𝑂𝑂.
Modals and quantifiers add additional axioms:

• can/many
Add no additional axioms.

• must
There is at least one 𝑂𝑂 for every 𝑆𝑆: ∀𝑠𝑠 ∈ 𝑆𝑆.∃𝑜𝑜 ∈
𝑂𝑂. 𝑠𝑠𝑉𝑉𝑜𝑜.

• one
𝑉𝑉 is a function; for any 𝑆𝑆, there is at most one 𝑂𝑂.
∀𝑠𝑠 ∈ 𝑆𝑆, 𝑜𝑜1, 𝑜𝑜2 ∈ 𝑂𝑂. 𝑠𝑠𝑉𝑉𝑜𝑜1 ∧ 𝑠𝑠𝑉𝑉𝑜𝑜2 ⇒ 𝑜𝑜1 = 𝑜𝑜2

• other
(when 𝑆𝑆 and 𝑂𝑂 are the same class). 𝑉𝑉 is anti-re-
flexive. ∀𝑠𝑠 ∈ 𝑆𝑆. ¬(𝑠𝑠𝑉𝑉𝑠𝑠).

The construction “an 𝑆𝑆 can 𝑉𝑉 an 𝑂𝑂” is detected by the parser,
but rejected because its semantics are ambiguous (it’s un-
clear whether it means an 𝑆𝑆 can 𝑉𝑉 one or many 𝑂𝑂s).

𝑆𝑆 can’t/must 𝑉𝑉 themself/themselves
𝑉𝑉 defines a relation over 𝑆𝑆 × 𝑆𝑆. If the modal cannot, or
synonyms (cannot, never, etc.) is used, the relation is anti-
reflexive. If the modal must (or synonym always) is used,
it is reflexive. Other reflexive pronouns (himself/herself/it-
self) may also be used.

𝑆𝑆 can 𝑉𝑉 each other/one another
𝑉𝑉 defines a symmetric relation over 𝑆𝑆 × 𝑆𝑆.

𝑆𝑆 is/are a kind of 𝑂𝑂
𝑆𝑆,…, and 𝑆𝑆 are kinds of 𝑂𝑂
The noun(s) 𝑆𝑆 define subclasses of 𝑂𝑂. An object being an 𝑆𝑆
implies it is also an 𝑂𝑂. The subclasses of a noun form a

partition so that an 𝑂𝑂 must also be exactly one of its sub-
classes.

𝑆𝑆 can be/is/are 𝐴𝐴
𝐴𝐴 is an adjective (monadic predicate) defined over the class
𝑆𝑆. The is/are form states that objects that are 𝑆𝑆s must also
be 𝐴𝐴. The can be form merely states that they may be.

𝑆𝑆 can be/is/are 𝐴𝐴,…,or 𝐴𝐴
Objects that are 𝑆𝑆s can be at most one of the 𝐴𝐴s. If the
is/are form is used, then they must be exactly one.

𝑆𝑆 has a/an 𝑃𝑃 between 𝑁𝑁1 and 𝑁𝑁2
All objects that are 𝑆𝑆 have a numeric property named 𝑃𝑃 in
the specified range.

𝑆𝑆 has a/an 𝑃𝑃 from 𝐹𝐹
All objects that are 𝑆𝑆 have a string property named 𝑃𝑃 whose
possible values are given in the specified file.

𝑉𝑉1 implies 𝑉𝑉2
𝑉𝑉1 is mutually exclusive with 𝑉𝑉2
States, respectively, that verb 𝑉𝑉2 is a generalization of 𝑉𝑉1, or
that they are mutually exclusive. For example, love and
hate are mutually exclusive, or loving im-
plies knowing.

𝑉𝑉 is rare/common/very rare/very common
Adjusts the probability of two individual being related by
the verb 𝑉𝑉 in the initial model used by the SAT solver.

Implementation
The system is written in C# and implemented using the
Unity3D engine (Unity Technologies, 2004) and the CatSAT
SAT/SMT solver (Horswill, 2018). It maintains a semantic
network of the nouns, verbs, and adjectives that have been
defined by the user, and the constraints applied to them such
as implications and cardinality constraints. When the user
gives an imagine command, such as “imagine five left-
handed Balrogs,” it creates a new CatSAT problem object
and walks the semantic net, starting from the concepts men-
tioned in the imagine command, to generate the relevant
propositions and constraints.
 By only generating propositions and constraints for the
parts of the ontology relevant to the specific generation re-
quest, the system can greatly reduce the amount of work that
the SAT solver has to do to generate the results. This allows
the user to create large ontologies, provided generation com-
mands only touch upon manageable chunks of the ontology.
 Having built the SAT problem, the system then calls the
solver to find a model (solution). It then re-walks the se-

mantic net to determine which nouns and adjectives poten-
tially apply to each generated individual and tests their truth
against the model, listing all relevant adjectives, but only the
most specific relevant nouns (the lowest ones in the is-a hi-
erarchy). Thus, if the generator knows the object is a
Balrog, it will not bother to add the redundant information
that it is also a monster.

Limitations and Future Work
Many things one would like to express in Imaginarium are
not currently possible. Some of these are due to its having
been in development for a little over two months. For ex-
ample, the system cannot presently represent mixed-breed
cats, such as tabby-Persians, but could easily do so simply
by adding more complicated cardinality constraints to the
language. Another example would be the ability to specify
defeasible rules, such as “poodles are usually large,” that
could be overridden by other rules, such as “toy dogs are
small,” thereby allowing it to understand that toy poodles
are small. While conceptually straightforward, these are not
yet implemented.

Inherent technical limitations
A more fundamental problem is the system’s reliance on bi-
valent logic. If a user tells the system that NPCs can be
grumpy, grumpiness is an all-or-nothing trait. There is no
notion of being somewhat grumpy, or situationally grumpy,
save for the user enumerating those as new, separate, all-or-
nothing traits.
 Another limitation is its inability to specify probabilities
for its random generation. While the system does provide
commands for changing the probabilities of various propo-
sitions in the initial assignments used by the SAT solver’s
random walk, there is no simple relationship between a
proposition’s probability in the initial truth assignment and
its probability in the final one, save that the latter is mono-
tone in the former.

Normativity and inclusivity
Role-playing games are simulations: simplifications of
some real or imagined world. The technical limitations dis-
cussed above add further pressure toward simplification.
 These simplifications can become problematic when they
involve social identity, such as race, class and gender. The
system avoids these issues for the moment by leaving it to
the player to formalize everything themselves: players can
then adopt whatever models they prefer. However, this

strategy breaks down if we imagine a user community shar-
ing and collaborating in the development of ontologies.3 An
ontology might have a very simple model of gender such as:

People are male or female.
Male people have given names from boy names.
Female people have given names from girl names.

However, a player wishing to use it might prefer a more nu-
anced model such as:

People are masculine-named or feminine-named.
People can be male presenting, female presenting, or
non-binary.
Male presenting people are masculine named.
Female presenting people are feminine named.
Masculine named people have given names from boy
names.
Feminine named people have given names from girl
names.

However, players who don’t wish to force names to be gen-
der-marked, who come from cultures with different gender
systems, who are playing games set in cultures with differ-
ent gender systems, or who just don’t want characters to be
gender marked at all, must either accept the system’s ontol-
ogy or descend into the code to try to fix it. Players trying
to combine ontologies created separately, such as mixing a
“modern North American character” ontology with a magic
user ontology in the hopes of making an ontology appropri-
ate for urban fantasy, may find the components have irrec-
oncilable models of social identity.
 We are unlikely to find a general technical solution to
these issues. However, a module system could potentially
mitigate the issues by allowing gender (or class, race, etc.)
systems to be authored independently of other systems and
then combined by the user. The question here would be how
to design such a module system, and to expose it to naïve
users in an accessible English syntax.

Related work
A number of designer-facing rule-based systems have been
developed for games. Perhaps the first such system is Nel-
son’s Inform 7 interactive fiction system (Nelson, 2006a,
2006b), which was a major influence on this work. Nelson
argues that programming languages based on natural lan-
guage, while inappropriate for general-purpose program-
ming, are a good match for tasks like IF authoring, since the
domain for computation is itself natural language text.

3 Such sharing and collaboration are important to the long-term success of
any technology such as Imaginarium.

 The Sims 3 used a simple forward-chaining production
system to allow designers to author relations between char-
acter personality and behaviors (Evans, 2009). The Versu
interactive fiction system (Evans & Short, 2013) used a far
more sophisticated logic programming system. However, it
proved extremely difficult for authors to use, and so Nelson
developed Prompter (Nelson, 2013), an Inform 7-like natu-
ral language front end to Versu that proved more accessible.
 Apart from Inform, the most successful designer-facing
rule system is likely Compton’s Tracery (Compton et al.,
2014), a tool to allow naïve users to develop text generators
based on context-free grammars. Tracery has a remarkably
large user community, with many thousands of twitter bots
alone having been built using it.
 Finally, there are a few examples of designer-facing con-
straint-based PCG tools. The first and most successful of
which is Tanagra (G. Smith et al., 2011), a constraint-based
Mario level editor. More recent examples include Gemini,
a game generator that uses ASP to reason about the aesthet-
ics of the games it generates (Summerville, Martens,
Samuel, Osborn, & Mateas, 2018), and AutoDread, a back-
story generator for IF characters (Horswill & Robison,
2018).

Conclusion
Imaginarium is a very simple interactive environment for
SAT-based PCG intended for use by non-programmers in
tabletop role-playing scenarios. It provides an English-
based declarative language in the style of Inform that allows
users to incrementally create and share ontologies for in-
game entities, and see randomly generated instances gener-
ated based on those ontologies.
 While limited in its expressiveness compared to full
logic-programming systems, its conciseness and familiar se-
mantics make it a promising tool for use by non-specialists.
That said, the system is early in its development and has not
yet been tested by non-programmers. The next step is to put
it in the hands of players who can evaluate it. We hope to
do this in an undergraduate course in the coming year.

Acknowledgements
Many thanks to Ethan Robison, Adam Summerville, and
Willie Wilson for advice and comments on the system, and
to the reviewers for the comments on the draft.

References
Adams, T., & Adams, Z. (2006). Slaves to Armok: God of Blood
Chapter II: Dwarf Fortress. Bay 12 Games.
Baral, C., & Baral, C. (2009). Declarative problem solving and
reasoning in AnsProlog*. In Knowledge Representation,
Reasoning and Declarative Problem Solving.
https://doi.org/10.1017/cbo9780511543357.005
Compton, K., Filstrup, B., & Mateas, M. (2014). Tracery :
Approachable Story Grammar Authoring for Casual Users. Papers
from the 2014 AIIDE Workshop, Intelligent Narrative
Technologies (7th INT, 2014), 64–67.
Compton, K., & Mateas, M. (2015). Casual Creators. Proceedings
of the Sixth International Conference on Computational Creativity
June. https://doi.org/10.1074/jbc.M409039200
Evans, R. (2009). AI Challenges in Sims 3. In Artificial
Intelligence and Interactive Digital Entertainment. Stanford, CA:
AAAI Press.
Evans, R., & Short, E. (2013). Versu. San Francisco, CA: Linden
Lab.
Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub,
T., & Thiele, S. (2010). A User ’ s Guide to gringo , clasp , clingo
, and iclingo ∗. Potsdam.
Guzdial, M., Liao, N., & Riedl, M. (2018). Co-creative level design
via machine learning. In CEUR Workshop Proceedings.
Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2006). Introduction
to Automata Theory, Languages, and Computation (3rd ed.).
Pearson.
Horswill, I. (2018). CatSAT: A Practical, Embedded, SAT
Language for Runtime PCG. In AIIDE-18. AAAI Press.
Horswill, I., & Robison, E. (2018). What’s the Worst Thing
You’ve Ever Done at a Conference? Operationalizing Dread’s
Questionnaire Mechanic. In AIIDE-18 Workshop on Experimental
AI in Games (EXAG-18). Edmonton, Canada: AAAI Press.
IDV. (2009). SpeedTree. Interactive Data Visualization, Inc.
Nelson, G. (2006a). Inform 7.
Nelson, G. (2006b). Natural Language, Semantic Analysis, and
Interactive Fiction. Cambridge, UK: Unpublished white paper.
Nelson, G. (2013). Writing for Versu. San Francisco, CA: Linden
Lab.
Price, R., & Stern, L. (1974). The Original #1 Mad Libs. Mad Libs.
Smith, A. M., Andersen, E., & Mateas, M. (2012). A Case Study
of Expressively Constrainable Level Design Automation Tools for
a Puzzle Game. In International Conference on the Foundations of
Digital Games. Raleigh: ACM Press.
Smith, A. M., & Mateas, M. (2011). Answer Set Programming for
Procedural Content Generation : A Design Space Approach. IEEE
Transactions on Computational Intelligence and AI in Games,
3(3), 187–200. https://doi.org/10.1109/TCIAIG.2011.2158545
Smith, G., Whitehead, J., & Mateas, M. (2011). Tanagra : Reactive
Planning and Constraint Solving for Mixed-Initiative Level
Design. IEEE Transactions on Computational Intelligence, AI and
Computer Games, 3(3), 201–215.
Summerville, A., Martens, C., Samuel, B., Osborn, J., & Mateas,
N. W. M. (2018). Gemini : Bidirectional Generation and Analysis
of Games via ASP. In Proceedings of the Fourteenth Artificial
Intelligence and Interactive Digital Entertainment Conference
(AIIDE 2018) (pp. 123–129). Edmonton, Canada: AAAI Press.

Summerville, A., Snodgrass, S., Guzdial, M., Holmgard, C.,
Hoover, A. K., Isaksen, A., … Togelius, J. (2018). Procedural
Content Generation via Machine Learning (PCGML). IEEE
Transactions on Games. https://doi.org/10.1109/tg.2018.2846639
Toy, M., Wichman, G., Arnold, K., & Lane, J. (1980). Rogue.
Computer Science Research Group, UC Berkeley.
Unity Technologies. (2004). Unity 3D. San Francisco, CA.
Wright, W., Hutchinson, A., Chalmers, J., Gingold, C., &
Librande, S. (2008). Spore. Redwood City, CA:
MAXIS/Electronic Arts.

	Abstract
	Example
	Simplification of Natural Language
	Syntax
	Sentential Forms and their Semantics
	Implementation
	Limitations and Future Work
	Related work
	Conclusion
	Acknowledgements
	References

