
Solving the Take-Down and Body-Hiding Problems

Jorge Morales Dı́az and Clark Verbrugge
McGill University
Montréal, Canada

jorge.moralesdiaz@mail.mcgill.ca and clump@cs.mcgill.ca

Abstract

Stealth games challenge players to complete tasks while re-
maining unnoticed by enemies. Modern versions often pro-
vide players with the ability to silently eliminate enemies, in-
ducing a puzzle-like nature to the task which combines find-
ing a path to the goal with the need to discover an order in
which enemies can be eliminated. This “take-down” problem
is made more complex by the need to hide the resulting en-
emy body from future observation. We present a version of a
sample-based search that can find paths respecting the stealth
constraints of both the take-down and body-hiding mechan-
ics, including multiple variations that address different ways
these problems are expressed in games. As a perhaps surpris-
ing outcome of our analysis, we show that an additional body-
hiding problem can improve the success rate, despite the ap-
parent increase in task complexity.

Introduction
Many modern stealth games mix the basic stealth challenge
of remaining undetected with light combat, allowing and
sometimes requiring a player to simplify the problem by
selectively eliminating enemies that may otherwise prevent
them from completing the task. The latter forms a mech-
anism in its own right, with non-trivial difficulty resulting
from enemies observing each other, and thus requiring play-
ers find a correct take-down order. This task is made more
complex by the need to hide the evidence after the fact—
body-hiding is necessary to stash knocked out enemies in
places where other enemies will not observe them.

In this work we explore algorithmic solutions to both the
take-down and body-hiding problems in a stealth context.
As with other, prior work on stealth games, we build on the
Rapidly Exploring Random Tree (RRT) search algorithm for
heuristically finding stealthy paths (Tremblay et al. 2013).
Critical choices like take-down events stress the ability of a
basic RRT search to solve such problems, and so we con-
sider different extensions to RRT that bias the search in this
respect, and which simulate the use of different degrees of
player knowledge of enemy motion. Body-hiding is then
layered on these designs. Reflecting different ways body-
hiding is integrated into games, we consider two approaches

Copyright c© 2019 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC
BY 4.0).

to the body-hiding problem, one based on the need to use
designer-specified hiding spots, and one focused purely on
ensuring the player task is accomplished prior to any poten-
tial evidence discovery.

We perform extensive analysis of different game level
mock-ups, considering several factors that affect success, in-
cluding the distance at which take-down can occur, and rel-
ative movement speeds. In simple levels the former parame-
ter dominates, although the relative impact is not uniform in
more complex scenarios. Interestingly, and despite the addi-
tional complexity, success can be improved by the addition
of body-hiding—the need to deposit bodies in hiding spots
not seen by enemies also moves the player away from po-
tential observation, reducing chances of search failure from
overly aggressive goal or take-down searching.

Specific contributions of this work include,
• We formalize the take-down and body-hiding problems as

important features of a stealth game puzzle. This extends
the core stealth puzzle model developed in previous work
on stealth games.

• We describe several variations on search-based solutions
to solving both take-down and body-hiding puzzles. Our
solutions improve upon a naive search, and allow for in-
complete information scenarios as well.

• Using a non-trivial implementation in the Unity frame-
work, we show feasibility in applying our techniques to
models of stealth puzzles found in actual stealth games.

Background
A stealth problem involves pathfinding from one location
to another while remaining unseen. Following previous ap-
proaches to analyzing stealth problems, we represent the
search space as a 2D polygonal game level extruded into
a third time dimension. Figure 1 shows an abstraction of
this representation. In a stealth game an enemy field of view
(FoV) can be modelled as a polygonal area, changing posi-
tion over time as the enemy moves, forming in our 3D space
another structure, more complex but similar to any other ob-
stacle. This allows us to treat stealth in terms of 3D pathfind-
ing.

The Rapidly exploring Random Tree (RRT) algorithm can
be efficient in 3D pathfinding, and has the advantage of com-
puting a random, heuristic solution. The latter is useful for



Figure 1: State-space representation of a stealth problem
where a 2D scenario is augmented with an extra dimension
(vertical) representing the time. A solution path is shown
from a starting location (blue sphere) to the goal (green
sphere), skirting obstacles (black areas) and enemy fields of
view (orange triangular prisms).

exploring a design space or better simulating the variabil-
ity of human behaviour. Originally presented by LaValle
(Lavalle 1998), the RRT algorithm is an iterative process for
growing a search tree in a given space by attempting to at-
tach a randomly sampled state from the 3D, non-obstacle
state-space to its nearest neighbour in the tree. Nodes suc-
cessfully attached grow the tree, while invalid samples are
discarded. The algorithm terminates when either the goal
state is reachable from a sampled state, in which case a path
from start to goal can be extracted from the tree, or the given
time or sampling budget is exhausted, in which case the al-
gorithm reports failure.

Additional features besides just position information can
be added as dimensions to the state space to allow RRT
to solve move complex problems. The same, random se-
lection process can then be applied, although with an in-
creased number of (often sparse) state dimensions the ability
to grow the tree effectively is reduced. Less uniform selec-
tion of random states can alleviate this, provided a suitable
biasing strategy can be found.

Take-Down Model
Take-down problems occur in stealth scenarios in which a
covert path is impossible, actually or apparently. Players are
required to use (violent or non-violent) combat to eliminate
an enemy, while still preserving the overall non-detection
property. This differs from distractions, which change en-
emy behaviour (Borodovski and Verbrugge 2016), but do not
require active enemy engagement.

Quietly eliminating an enemy can be an optional part of
any stealth scenario. The more interesting puzzle-like nature
of the problem becomes evident when enemies are observ-
ing each other. Figure 2 shows an example. The player needs
to reach the goal (green dot), but the corridor entrance is
protected by the field of view of guard 3 (orange FoV). In
order to eliminate guard 3, however, the player must first re-
move guard 2 (yellow FoV), which requires removing guard
1 (pink FoV). The apparent necessity to eliminate a guard
as part of a stealth solution, and a non-trivial chain of such
dependencies in particular is the basis for what we call a

Figure 2: Take-down problem example. Here a guard ob-
serves the corridor entrance, while two other guards observe
the first and each other. In order to enter the corridor, a player
must eliminate the guards in a specific order.

take-down problem.
This is more complex in actual game contexts due to

the dynamic nature of agent movements, which changes the
ordering or introduces temporal limitations on when take-
downs can occur. Different game designs can also require
the player to eliminate all enemies (whether strictly neces-
sary for covert pathing or not) as a progress condition, mak-
ing take-down the primary goal.

Basic Take-down Using RRT
In order to analyze the take-down problem we augmented
the RRT representation previously used for the pure stealth
problem (Tremblay et al. 2013). Each RRT node is now re-
quired to include the state (alert or taken down) of each en-
emy. The random sampling is still performed in the base
x, y, t space, with newly attached nodes assuming enemy
status is inherited from their parent node. Connectivity be-
tween the new node and parent can then use the parent’s en-
emy states in order to determine whether an enemy is alert,
and thus whether their FoV inhibits connecting the new node
to the search graph.

To enable actual take-downs a player must reach an en-
emy position undetected. It is of course unlikely that an ex-
act enemy position will be sampled by the RRT, and so an
action radius is added that determines how far the player
can be from an enemy while still being able to take it down.
Even within this action radius, since take-down order is im-
portant, it is also necessary to allow a node to choose not
to take-down an enemy. For this we use an action probabil-
ity, changing the enemy state from alert to taken down only
with some chance. Note that we assume taking an enemy
down is instantaneous, although adding a duration to this
event would be straightforward.

We can thus summarize the modified RRT algorithm in
terms of the following steps.

1. Sample a new node n from the reachable, non-obstacle
x, y, t state space.

2. Find the closest neighbor m in previously sampled nodes.
Verify no alert enemy FoV intersects n or the path from
m to n. Copy all enemy status from m into n.

3. If n is inside the take-down radius of an alert enemy,
based on the action probability either proceed with the



take-down or not. If so, the enemy changes state from alert
to taken down.

4. Check if the goal can be reached from n, and if so connect
it (and terminate the search).
It is important to notice that the correctness of this ba-

sic solution depends on having full information on the game
level, including geometry and enemy positions. Success
also strongly depends on fortuitous sampling of take-down
nodes, which even with an action radius can be unlikely.

Improving the Basic Approach
We improve the low likelihood of sampling take-down nodes
through three different techniques, biasing, prediction, and
correction. These approaches offer different trade-offs be-
tween improvements in success rate and the amount of
ahead-of-time, deterministic knowledge of enemy move-
ments that is required.

Biasing An RRT search for a basic pathing problem en-
counters a similar issue, in that it is unlikely to randomly
sample the goal node. A typical solution is to bias the search,
immediately and artificially sampling the goal node after
each newly connected node to test for a direct connection
to the goal. A similar approach can thus be applied to ag-
gressively locate take-down nodes.

Specific biasing designs may choose to add new nodes, or
to simply replace or modify a sampled node. Our approach
to biasing follows the latter strategy: with some probability,
a valid, newly sampled node n that would otherwise fail to
take-down an enemy e for being outside of the action radius
is modified, creating instead a node n′ with a geometric po-
sition randomly selected to be outside e’s FoV but inside its
action radius. This approach is not trivially successful, and
as with normal sampling we still need to verify that n′ is
both a valid position in geometry (and time as well), and can
still connect to the same parent p in the search tree. The lat-
ter is overly conservative—we can search for a new parent
as well, but as these checks may be performed for each new
node a low cost solution is preferable.

Prediction The bias approach requires full knowledge of
enemy positions, both for the basic RRT search and for val-
idating and selecting bias nodes. For players this knowledge
is usually heuristic, and take-downs would be more often
performed opportunistically, based on an ad hoc judgment
made upon observing an enemy.

Our prediction approach attempts to model take-downs in
terms of this partial knowledge. Similar to the bias approach,
with some probability a node nmay be changed to n′, a node
located at a different, in this case future position. We deter-
mine the position of n′ by estimating the enemy’s motion,
dead-reckoning into the future based on its current and pre-
vious position one time interval prior. For this we use a sim-
ple linear estimation, although the design extends naturally
to more complex position estimates, potentially incorporat-
ing knowledge of previous positions and level geometry.

Correction Players without advance knowledge of enemy
motions will need to react to potential observation by ene-
mies. Upon encountering an enemy (assuming they are not

immediately seen), a player will either change course to
avoid detection, or make the heuristic choice to perform a
take-down. Translated into our RRT search context, we can
use RRT nodes normally discarded during the basic stealth
pathing as additional sources of knowledge that opportunis-
tically inspire take-down decisions. When a node is sam-
pled such that the path to its parent intersects an enemy FoV,
we treat it as a potential player observation: the player has
seen an enemy in the way, and now heuristically adjusts their
strategy to instead perform a take-down.

Figure 3 illustrates the design. A sampled node (red) is
created and a suitable parent node (green) found. Since the
node-parent connection intersects an enemy FoV (orange tri-
angle), the new node would normally be rejected. In this de-
sign, we instead locate the intersection point (black), and
translate it following the FoV edge as a reference to a point
outside the FoV but within the enemy action radius (grey
dot). Note that we limit this process to intersection points
on the left or right “arm” of the enemy FoV—“correcting”
paths attempting to enter the FoV from the 3rd side could
also be found, but would require more complex pathing.

Figure 3: A potential take-down position can be estimated
from an otherwise failing sample node.

Body-Hiding Model
Our approach so far has naively assumed that taking down
an enemy deletes it from the environment. In many stealth
games, however, the take-down problem implies an ad-
ditional concern in needing to dispose of the evidence—
knocking out an enemy leaves a body behind, which if seen
by other enemies also results in stealth failure.

Several variations on this challenge exist. In many games
players have the ability to move a body, allowing them to
hide it from future observation. The main complexity is then
in finding an appropriate hiding spot after a take-down while
still remaining unobserved by the remaining enemies. Hid-
ing spots can be offered in a few common ways, either based
on preset or easily identified safe locations provided by the
designers—large trash containers, closets or heavily shad-
owed areas—or through player knowledge, understanding
enemy motions to identify or learn locations not covered by
other, remaining enemies prior to taking them down as well
and/or completing the level.

In general, body-hiding induces a separate pathfinding
problem after a take-down event. In many games, this search
requires the use of a different movement model, since only
one body can be carried at a time, often with reduced mo-
bility or other action limitations. To handle this our RRT



search needs a more detailed record of the state of each en-
emy, which can be Alive, Unconscious (and assumed car-
ried), Dropped, or actually Hidden.

Preset
As with the take-down problem, relying on random selec-
tion to find a drop location is unlikely (depending the rela-
tive area of the preset locations), and so we also use a biased
approach. After each node n added to the RRT, if an un-
conscious enemy is being carried, with some probability we
check if any hiding spots are reachable. If so, a random posi-
tion in a hiding spot will be selected and we attempt to con-
nect it to n and update the enemy state to Hidden within n.
If a hiding spot is not connected the search continues as nor-
mal, with any further connections to n inheriting the fact that
an enemy is in the Unconscious, carried state. This model al-
lows us to ensure only one body is carried at a time, but does
not restrict the ability of a player to move arbitrarily while
carrying it.

Learned
Hiding spots may also need to be identified by players
heuristically, based on discovering which spots are seen by
enemies or not, often over repeated game-plays. For this we
add a probability factor to control whether an unconscious,
carried enemy is dropped or not, in this case assuming that
drops can happen arbitrarily at any (valid) RRT node. If no
enemy subsequently observes the drop-site, the body-hiding
is successful. If it is seen at some point during the RRT exe-
cution, a radius around that position is marked as an unsafe
spot (we use an area rather than a position to allow some
conservative uncertainty). As the RRT iterates, unsafe spots
are better identified, allowing for improved decisions in fu-
ture iterations, although this also depends on the order and
timing of the take-downs, since a safe spot might be found
because the enemy capable of observing that spot is already
inactive. This motivates the use of a separate Dropped en-
emy state, as we need to check whether Dropped enemies
are seen during other enemy movements, while Hidden ones
can be safely ignored.

Experimental Results
Initial tests were performed on a synthetic scenario to de-
termine efficacy and analyze parameter configurations. We
then extended this to more complex scenes based on level
designs from actual games. Data was gathered using the
Unity 3D framework on a Windows 10 machine, with an
i5-2320 CPU operating at 3.0GHz, and 8GB of RAM. Un-
less otherwise stated, tests shown in this section were per-
formed applying a value of 100% for both the take-down
action probability pk and the bias probability pb.

Synthetic Test
Figure 4 shows a simple stealth scenario in which there is
a dependency in the order in which the enemies must be
taken down: two static enemies are guarded by a third en-
emy that rotates back and forth to cover the other two with
its FoV, forcing the player to take down the enemies in the

order A → B → C (taking down C is optional under the
right timing).

Figure 4: Test Scenario. Starting from the blue circle on
the left, the player must take down enemies (yellow) while
avoiding their FoVs (orange) to reach the goal (green) in the
center. Grey shapes represent designated body-hiding sites.

We used this scenario to investigate the impact of the take-
down radius r and the enemy speed ve on the success rate
of the search. Using 100 iterations of the RRT algorithm,
each with a maximum of 7, 000 nodes, we examined radius
values between 1 and 10, keeping enemy speed constant at
ve = 10. At 10× the player speed this ensures a significant
challenge even at higher radii. We also examined ve in the
range 1 to 10 while keeping the radius constant at r = 3,
as a reasonable, intermediate radius value. Under these pa-
rameters we only observed changes in the success rate of
the naive and correction approaches; both the prediction and
bias approaches achieved 100% success with all the config-
urations.

Figure 5: Average success in the Test Scenario for all pairs
of parameters with the naive approach.

Results for the naive approach are shown in figure 5. We
observed a moderate downward trend as we increase enemy
speed, with success rates differing by at most 30%, but a
proportionally much larger change due to radius, extending
from around 2% when r = 1 (take downs require being right
behind an enemy), up to 100% at a fairly distant radius of 8.
The correction approach improves on this but shows simi-
lar trends. The low point occurs at r = 1 and ve = 10,
with around 40% success, reaching 100% success at r = 7.
Enemy speed has a slightly larger impact, differing up to



40%—the increased rotation speed of enemy C has more
consistent coverage of the other enemy FoVs, resulting in
more invalid node choices from the correction bias.

The body hiding parameters where also tested in a similar
manner by adding two hiding areas, one on top and one on
the bottom area of the scenario. Here we focused our anal-
ysis in the body-drop probability pd and the bias towards
hiding zones pb. We set r = 3 and ve = 1 for all the tests,
and proceeded as before: we set the bias pb = 1.0 and let pd
range from 0 to 1 in steps of 0.1, and then fixed pd = 0.5 and
let pb range similarly. The results, shown in figure 6, sug-
gest that the success improves in the naive approach mainly
when the user is more likely to drop the bodies: naive sam-
pling will not always select nodes inside a hidden zone, and
therefore it is better to have a high body-drop probability to
take advantage of the times that such nodes are selected.

Figure 6: Effect of the body hiding parameters in the success
of the Preset hiding zones for the Test Scenario using a naive
search.

Success on Complex Scenarios
Our second set of tests used more complex level designs
adapted from popular stealth games. These levels include
2D representations of more complex 3D elements, including
overhead traversal and visual-only occlusion. We focus here
on analyzing performance and success rate of the different
approaches, fixing other parameters (r = 1, ve = 1, pb = 1,
and pd = 1).

Figure 7: Aventa Station scenario. The player must get from
the bottom right (blue dot) past the station (large central ob-
stacle) to the upper left (green dot).

The first scenario, shown in figure 7, is a model of the
Aventa Station scene from Dishonored 2 (Bethesda Soft-
works, 2016). Thin obstacles (red) represent 3D features that

hinder movement but do not occlude FoV—some fences, and
a guard observation kiosk. The player is required to enter the
station; since we did not model the station interior, we place
the goal behind the station.

Success Rate Nodes Time
x σ x σ x σ

Take Down Model
Random 19.4% 0.029 5713 728 2.64 0.141
Bias 47.8% 0.048 5360 301 2.27 0.138
Prediction 47.3% 0.043 5615 452 2.43 0.131
Correction 37.5% 0.057 5256 526 2.62 0.143

Preset Hidden Zones
Random 24.9% 0.045 5662 418 3.22 0.246
Bias 60.89% 0.037 4864 137 3.36 0.321
Prediction 56.4% 0.044 5261 311 3.01 0.163
Correction 46.5% 0.038 5090 351 3.21 0.099

Learned Hidden Zones
Random 23.6% 0.037 5818 611 3.01 0.148
Bias 44.7% 0.056 5419 306 3.04 0.123
Prediction 42.1% 0.057 5645 338 3.32 0.179
Correction 34.6% 0.048 5197 368 3.49 0.171

Table 1: Results for the Aventa Station scenario for the sim-
ple take down model and the body hiding model with differ-
ent hidden zones strategies. Results based on 10 experiments
with 100 iterations using a maximum of 10,000 RRT nodes.

RRT success rate and timing data is summarized in table 1
for our different approaches. Biasing offers more improve-
ment than correction over random, likely due to its more ag-
gressive approach to selecting potential take-down spots. In-
terestingly, the addition of a body-hiding mechanic, at least
for preset hiding zones ends up improving overall success
rate. Designated hiding zones in this scene require the player
move well away from the central, well guarded area, reduc-
ing the chances of body observation and moving the player
into a position where a stealthy solution is easier to discover.
This can be seen in Figure 8a, which shows solution paths,
most of which pass through or are easily reachable from the
preset hiding areas. Learned zones, shown in Figure 8b, are
not as effective due to the discovery cost, although they do
begin to converge to areas similar to the preset ones.

A second test scenario is based on an additional part of
the level situated on the back side of the previous scenario.
In this scenario illustrated in figure 9 a set of static enemies
wait to ambush the player behind various objects. The player
(initialized to the blue circle at the bottom of the scene) has
two options to avoid being detected: they can go around the
main building (black object on the right) to get to the up-
per section and take down the enemies from there, or use
the building balconies (shown as purple sections next to the
black obstacles) to move around while staying hidden.

Results of the experiments for this scenario contrast with
results from the previous test with respect to body-hiding.
Here the learned strategy performs better than the preset
strategy, even with a quite large hiding area (shown in grey).
Success rate goes from 33.4%, 77.4%, 79.5%, 57.9% for the
naive, bias, prediction and correction approaches respec-
tively. to 34.6%, 93.6%, 93.2% and 57.9%. This difference



(a) (b)

Figure 8: Solutions for the Aventa Station scenario for the
bias approach. (a) Shows an overlay of 30 solutions to the
take-down model represented as green lines. (b) Shows the
set of learned hidden spots (grey) and exposed spots (red)
after 1000 iterations of the body-hiding algorithm.

Figure 9: Aventa Alley scenario.

is related to the nature of the enemies in the scenario: all of
them are static enemies, and thus the search is able to find
consistent hidden spots near to the take-down positions in-
stead of traveling back and forth between the hidden zones
and the enemies positions.

Related Work
Stealth game analysis is dominated by the problem of find-
ing a hidden or covert path through a game level. Early work
on this is found in the robotics domain, where a variety of
algorithmic approaches have been explored. Marzouqi and
Jarvis, for example, construct a discrete visibility map of
inter-visible areas, combining it with a distance transform
to help search for a shortest, most covert path (2004). Visi-
bility maps have been also combined with other techniques;
corridor maps, for instance, provide a Voronoi-based parti-
tioning strategy that when combined with visibility informa-
tion allows searching for a path that minimizes visibility val-
ues (Geraerts and Schager 2010). Other approaches focus on
the impact of known vs unknown environments, uncertainty
in observer positions, etc.; Marzouqi and Jarvis survey the
area (2011).

Probabilistic solutions have also been considered in game
contexts. Johansson and Dell’Acqua construct a hierarchi-
cal scene model, using prior experience of an agent in ob-
serving enemy positions to define the likelihood of being

observed at specific locations (2010). Searching through the
resulting graph structure can then locate a path of lowest
observation probability. Our work focuses on finding ex-
act, guaranteed solutions, with full level knowledge. We
build on Tremblay et al.’s approach to covert pathing (2013),
using Lavalle’s RRT algorithm for a fast, heuristic search
that can generate multiple solutions, as a proxy for poten-
tial player choices. This work was later extended to include
combat (Tremblay and Verbrugge 2015), and incorporate
distractions (Borodovski and Verbrugge 2016). Distractions
are often found in stealth games, allowing players to create
a noise or visual disturbance that attracts guards away from
their normal route, exposing additional opportunities.

Performing a take-down is related to the basic intercep-
tion problem, where an agent is required to path toward the
location of a dynamic agent. Again, prior work mainly stems
from robotics, and is typically focused on probabilistic ap-
proaches. Garzón et al., for example, apply the Risk-RRT
algorithm, a variant of RRT that incorporates uncertainty in
avoiding collisions with dynamic obstacles to plan the mo-
tion of Unmanned Ground Vehicles (UGV) for surveillance
purposes, adapting the algorithm to perform interception by
aiming for collisions rather than avoiding them (2014). A
covert approach to interception is described by Park et al.,
who use a predictive technique to select a specific point
for interception, and then plan for a path that gets a robot
as close as possible to its target while still being unde-
tected (2009). A game context adds complexity in consid-
ering the need for multiple interceptions, while hiding the
evidence as well, and as far as we are aware ours is the first
attempt at extending stealthy pathing to include take-down
and body-hiding problems.

Conclusion & Future Work
Stealth game scenarios are designed as a combination of
different factors that can either reduce or increase the dif-
ficulty for the player in achieving their goals (Smith 2006).
Adding mechanics or behaviours to both players and ene-
mies increases the space of player actions and therefore, the
complexity for analyzing the design and its solutions. Our
expectation was that both take-down and body-hiding would
reduce search success, but it is interesting to note that the
additional effort of body-hiding can at least sometimes sim-
plify the problem, indirectly forcing a player into locations
more advantageous for continuing solution discovery.

Our work presents a few possible approaches to the take-
down and body-hiding problems, but it has not explored all
possible variations on them. Variants such as having a dy-
namic take-down radius based on available weapons, the ef-
fect of imperfect information, consideration of sound and
other forms of detection, among many other stealth game
features would be interesting to explore. Our current focus
is on improving RRT search. Although reasonably effective,
success rates even with just the take-down and body-hiding
mechanics are not high, and approaches to biasing or parti-
tioning the RRT search may offer additional improvements.

Acknowledgements: This work was supported by NSERC
grant RGPIN-2019-05213.



References
Borodovski, A., and Verbrugge, C. 2016. Analyzing stealth
games with distractions. In Twelfth Annual AAAI Confer-
ence on Artificial Intelligence and Interactive Digital Enter-
tainment, 129–135.
Garzón, M.; Fotiadis, E. P.; Barrientos, A.; and Spalanzani,
A. 2014. RiskRRT-based planning for interception of mov-
ing objects in complex environments. In Armada, M. A.;
Sanfeliu, A.; and Ferre, M., eds., ROBOT2013: First Iberian
Robotics Conference, 489–503. Springer International Pub-
lishing.
Geraerts, R., and Schager, E. 2010. Stealth-based path plan-
ning using corridor maps. In Computer Animation and So-
cial Agents.
Johansson, A., and Dell’Acqua, P. 2010. Knowledge-
based probability maps for covert pathfinding. In Boulic,
R.; Chrysanthou, Y.; and Komura, T., eds., Motion in Games,
339–350. Berlin, Heidelberg: Springer Berlin Heidelberg.
Lavalle, S. M. 1998. Rapidly-exploring random trees: A
new tool for path planning. Technical Report TR 98-11,
Computer Science Dept., Iowa State University.
Marzouqi, M., and Jarvis, R. A. 2004. Covert path planning
for autonomous robot navigation in known environments. In
Proc. Australasian Conference on Robotics and Automation,
Brisbane.
Marzouqi, M. A., and Jarvis, R. A. 2011. Robotic
covert path planning: A survey. In 2011 IEEE 5th Inter-
national Conference on Robotics, Automation and Mecha-
tronics (RAM), 77–82.
Park, J.; Choi, J.; Kim, J.; and Lee, B. 2009. Roadmap-based
stealth navigation for intercepting an invader. In 2009 IEEE
International Conference on Robotics and Automation, 442–
447.
Smith, R. 2006. Level-building for stealth game-
play - Game Developer Conference. http:
//www.roningamedeveloper.com/Materials/
RandySmith_GDC_2006.ppt.
Tremblay, J., and Verbrugge, C. 2015. An algorithmic ap-
proach to decorative content placement. In Experimental AI
in Games Workshop (EXAG 2015), 75–81.
Tremblay, J.; Torres, P. A.; Rikovitch, N.; and Verbrugge,
C. 2013. An exploration tool for predicting stealthy be-
haviour. In The Second Workshop on Artificial Intelligence
in the Game Design Process, 34–40.


