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Abstract
Videogames are created for human players whose common-
sense knowledge of real-world objects and interactions (and
their familiarity with other games) primes them for success-
ful play. Action games feature recurring formal elements
including a directly controlled avatar, moving enemies, re-
source pickups, and portals to new map areas; mapping these
onto culturally significant symbols helps players learn to play
quickly. We present a schema, annotation tool, and dataset
for codifying screenshots containing game objects in terms of
their affordances, which is suitable for AI agents and machine
learning algorithms for a variety of interesting and significant
applications.

Introduction
Videogame play from vision has been increasingly success-
ful since the development of Deep Q-Learning (Mnih et al.
2013). While strategy games like Starcraft and Defense of
the Ancients 2 can be tackled with substantial computing
resources (Vinyals et al. 2019; OpenAI 2018), even rela-
tively simple adventure games like Montezuma’s Revenge
have posed a significant challenge, where superhuman play
has been achieved only recently (Ecoffet et al. 2019). This
may be in part because adventure games rely on human in-
terpretation of hints and because diverse (but targeted) ex-
ploration of the state space is more important than optimiz-
ing short sequences.

Even where automated game players have been success-
ful, they are known to be sample-inefficient relative to hu-
man players, often requiring lifetimes of practice to achieve
their impressive results. While the way in which a machine
plays and the way in which a human plays are necessarily
different, it seems likely that a major advantage held by hu-
mans is their familiarity with cultural signifiers (McCoy et
al. 2010) as a powerful prior on the likely outcomes of game
object interactions. Humans learn these beliefs through their
experiences with real-world objects, socialization, and game
literacy—for example, they might suspect a round object can
roll, that a skull indicates danger, and that a stationary glow-
ing orb is likely to be beneficial to touch. This suspicion is
supported by previous research, which shows that the human
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advantage collapses when a game’s graphics betray player
expectations (Dubey et al. 2018). Knowing the interactions
that game objects afford, such as “this block will block any
agent’s movement” or “this key can be picked up by my
agent”, helps humans guess what they can (and should) do
to progress in a game. We define videogame affordances as
the actions that agents are capable of performing on objects
in the environment. In contrast, an algorithm like Deep Q-
Learning or Go-Explore might only implicitly learn to avoid
rolling skulls or spiked pits.

Incorporating object affordance data has been helpful for
agents that must act in open-ended problem spaces besides
games. In the case of improvisational interactions involving
a prop, organizing possible actions by the prop’s affordances
facilitates search and enables stronger performances (Ja-
cob and Magerko 2018). Affordances of real-world objects
are determined by their visual and physical properties, and
videogame graphics analogously suggest their affordances
by genre convention and internal visual consistency. Since
we cannot model every game’s simulation rules and art di-
rection, we have developed a tool for quickly tagging game
screenshots with per-pixel object affordances and built a
small corpus of game object affordances. We have exercised
this dataset on a prototype model which predicts, from a
videogame screenshot, the likely affordances at each pixel
location. Applications for this dataset and our model could
include:
• Priors for game-playing agents
• Human-legible world representations for Explainable AI
• Transfer learning between games and genres
• Style transfer between games
• Interaction-aware procedural content generation

Schema
Our initial dataset1 comes from the Nintendo Entertainment
System games The Legend of Zelda and Super Mario Bros.
3 (113 and 24 images, respectively), with pixel-wise labels
for a reasonably general and complete set of nine affor-
dances (Table 1). We also have broken-out images and af-
fordance data for background graphics and character sprites

1https://github.com/gerardrbentley/Videogame-Affordances-
Corpus



Solid Blocks an agent’s movement
Movable An agent can move it
Destroyable Can be eliminated from the game world
Dangerous Hurts an agent
Gettable Can be acquired by an agent
Portal Reveals more of the game world
Usable An agent can directly interact with it
Changeable Can change form
UI Non-game user interface elements

Table 1: The nine key affordances in our dataset.

appearing in these games, and we are at work coding screen-
shots from additional games.

We selected our nine affordances based on the authors’
expert knowledge of videogame objects and their seman-
tics in NES action-adventure and role-playing games and the
first-person shooter DOOM. Each affordance is a zero or one
label, with more complex objects like breakable doors built
out of several individual affordances.

These affordances capture important interactions between
player agents and a game environment and seem to gener-
alize to many games involving moving an agent and inter-
acting with environment objects (for example, they seem
well-suited to Videogame Description Language (VGDL)
games (Thompson et al. 2013)). For example, solid objects
in a game level usually dictate the path a player agent will
follow, while destroyable objects may reveal something use-
ful when destroyed. We note that Changeable and UI are
somewhat vague labels compared to the others. The for-
mer suggests possibly indirect interactions with the objects,
while the latter states that the objects are non-diegetic and
exist outside of the world of the agents. A common example
of changeable objects are closed doors (which are also solid
and are portals) that open under some condition. A door with
a lock emblem usually suggests that the player must directly
unlock it to change it, which adds the label usable. Oppo-
sitely, a closed door with no apparent lock often requires the
player to perform some action (defeating all enemies, push-
ing a block in the room somewhere) to change it to an open
doorway (non-solid, non-changeable, and a portal).

The primary component of our corpus is the set of anno-
tated screenshots, which are 256 × 224 images taken from
game play alongside binary encodings of each affordance at
each pixel. This is the native resolution of NES and SNES
games, but the important thing is that the game screenshot
and the affordance maps have the same resolution.

Our schema treats tile-based and non-tile-based game
screenshots in the same way, but our labeling tool is special-
ized for tile-based games and it records some extra data (per-
tile and per-sprite affordances) for such games. A tool meant
for labeling, e.g., 3D game screenshots could work in terms
of textures, shaders, or 3D models instead of tiles (Richter
et al. 2016).

Annotation Tool
In addition to the annotated screenshots and tiles, we also
present the tool we used to process our data. We hope that

Figure 1: Affordance Annotation Tool. The single blue
bounding box notes the current section to be labelled. The
nine images correspond to activations of each affordance,
where white means the affordance holds

the ready availability of our tooling will support community
or crowd-sourced expansion of the dataset.

Tile-based games offer interesting challenges for
computer-assisted labeling. Like previous work in an-
notating game screenshots (Summerville et al. 2016;
Guzdial and Riedl 2016), we use OpenCV’s template
matching (Bradski 2000) to identify sprites and tiles that
have already-known affordance labels. Given a new screen-
shot, our tool (Figure 1) performs an automatic sprite- and
tile-wise template matching on a user-adjustable grid. While
it is easy (for most NES games) to identify tiles by splitting
the image on a uniform 16 × 16 or 8 × 8 pixel grid, the
underlying grid is not always aligned with the corners of
the screen (as in the scrolling Super Mario Bros. 3), which
requires manual shifting in our process.

Additionally, we need to handle game objects that move
off the grid—sprites. Because the number of sprites is usu-
ally small compared to the number of tiles, we currently
require a spritesheet for each game which an annotator la-
bels in advance. Unfortunately, spritesheets collected by en-
thusiasts may not exhaust all sprite orientations and may
use different color palettes than the emulators used to col-
lect game screenshots (the famous, apopcryphal expansion
of NTSC is “Never Twice The Same Color”). To make the
system more robust to these differences, we use a suite of
sprite detectors in a variety of spaces and require that they
all match (though at different thresholds): grayscale, RGB,
Sobel-derivative, Laplace-derivative, and Canny edges. We
believe that a semi-supervised machine learning approach to
identify sprites could greatly assist in labelling new games,
but we leave it to future work.

After detecting and labelling known tiles and sprites, our



tool asks the user the affordances of unknown tiles in the
image, including previously unseen tiles and tiles that are
obstructed by sprites (a keyboard-based interface is avail-
able for ergonomics). Newly labelled tiles are saved to the
collection of known game tiles, but pixels belonging to over-
lapped tiles are only tagged in the current image. We believe
this step could be made more automatic by a system that
removes sprites from the background, allowing previously
covered tiles to be matched. After this process the image
is fully labelled except in locations where sprite detection
failed, in which hand annotation is employed.

Applications
Our immediate use-case is to develop a model for predict-
ing game object affordances from vision. This is a multiple-
label classification problem—multiple labels may apply to a
single pixel and we want the model to predict all of them.
The multiple-label setting distinguishes this work from ob-
ject detection, semantic segmentation, and image classifica-
tion problems, and it has not been explored in the videogame
domain to our knowledge.

Our prototype (a reasonable baseline) adapts the SegNet-
Basic architecture (Badrinarayanan, Kendall, and Cipolla
2017) to the multi-label setting: a fully convolutional
encoder-decoder network outputs a 9-channel affordance
map from a grayscale input image (full RGB data did not
significantly improve performance). Figure 2 shows the out-
put of our model for a screenshot from The Legend of Zelda.
We evaluated our baseline using 3-fold validation, with
Hamming loss as the validation metric. The mean Hamming
loss in our worst fold was 0.0214 (our best was 0.0189),
which is an average of 11,044 mispredicted labels per image
(out of a possible 516,096 predictions). On visualizing the
worst-labeled images, we believe this is mainly due to the
model not seeing relatively rare objects like enemy sprites.

This task is the most direct application of our dataset
and supports research in guiding AI game play with human-
like priors without encoding explicit game- or genre-specific
knowledge. Participants in the Generalized Videogame AI
competition (Perez-Liebana et al. 2016) have shown that de-
veloping domain knowledge of object interactions—similar
to that described in our dataset—is a beneficial intermedi-
ate goal for agents playing previously unseen games. Some
important factors in the decision process of past competition
winners include:

• The position of the player agent

• The distance between the player agent and non-player
agents

• Identifying non-player agents as friendly or hostile

• Approaching resources if any are present, otherwise a por-
tal

• Exploring unknown areas when other evaluations fail

The VGDL (as used in the competition) represents some
of this information explicitly and makes it available to
agents. We expect algorithms utilizing this information

(even if it is noisy) will reach human performance more eas-
ily than algorithms which do not. Our corpus is the first step
towards extracting this information from games in general.

Feature Representation
The recent Go-Explore algorithm, using only downsampled
pixel data, achieved nearly four times the previous best score
by current reinforcement learning algorithms in the Atari
game Montezuma’s Revenge (Ecoffet et al. 2019). Supplied
with knowledge of the player agent’s location and room
number, the algorithm outperformed the human record in
Montezuma’s Revenge by an order of magnitude and aver-
ages better than human performance in Pitfall, a game previ-
ously unsolved by strict reinforcement learning. Go-Explore
uses a combination of techniques to extract this domain fea-
ture information from pixels, including locating the player
agent by a pixel color that only appears on that agent’s sprite
and template matching an image of a key to keep track of
where in the game they were found. Our work would help
generalize this aspect of extracting domain information from
raw pixels to other games. The affordance maps could even
be used as a more informative state representation than the
coarse visual approximation used by Go-Explore’s domain-
independent pixel representation. In the same vein, work-
ing from affordances rather than from screenshots could
promise more transferrable game moment embeddings for
search, retrieval, and novelty appraisal (Zhan and Smith
2018; Zhan, Aytemiz, and Smith 2018).

Cutting edge research in image captioning has focused
on using neural network architectures to generate accu-
rate natural language descriptions of real-world images (Bai
and An 2018). Successful methods include encoder-decoder,
attention-guided, and compositional architectures, which
operate by deriving context and feature vectors from images
via convolutions. Limited research has been done on cap-
tioning videogame screenshots and models trained on real-
world images fall short (Fulda et al. 2018). We feel that se-
mantic captioning of videogame screenshots is a natural ex-
tension of this work, which could also lead into automatic
tutorialization (Green et al. 2018).

The predictive model described in the beginning of this
section is, in some sense, learning to see game screenshots
in instrumental terms. The convolutional part of this trained
network could be used to bootstrap other models that work
from game screenshots, and the final outputs can serve as
a transferrable, lowest-common-denominator way for an al-
gorithm to understand a picture from a game.

In addition to generating descriptions of whole images,
we see this work fitting with research in more explainable AI
systems. Training agents with this high-level game informa-
tion like affordances (rather than raw pixels) could expose
how perceived image features influence the agent’s choices.
Explaining and observing actions in terms of affordances
shows what functional interactions the agent values, even if
its internal processes did work from raw pixels.

PCGML
Any game dataset suggests immediate applications
in procedural content generation via machine learn-



Figure 2: A screenshot from The Legend of Zelda (left) and non-zero affordance predictions (right). Predictions for solid
(Purple), portal (Yellow), dangerous (Green) and destroyable (Red). UI area is predicted, but excluded here for clarity

ing (PCGML) (Summerville et al. 2018). Using the model
described earlier, it is easy to imagine a level designer
sketching out an affordance map and running the model in
a DeepDream-like setting to find an image which optimizes
the probability of predicting that particular affordance
map (Mordvintsev, Olah, and Tyka 2015). Since we have
per-sprite and per-tile affordance data, we could come
up with an embedding from 16 × 16-pixel graphics to
affordance labels, and attempt to perform vector arithmetic
in affordance embedding space to procedurally generate
new game graphics.

We also see this work as complementary to existing
efforts like the Videogame Level Corpus (VGLC) (Sum-
merville et al. 2016). One interesting interaction is to ob-
tain and tag level data from the VGLC. We could also use
the model described above and an automatic mapping sys-
tem like Mappy (Osborn, Summerville, and Mateas 2017a)
to create new maps and interaction-aware legends to ex-
pand the VGLC. Combining both corpora could also provide
richer features for PCGML algorithms.

Related Work
The most direct related project is the Videogame Level Cor-
pus, which contains structural level layouts and per-game
semantic tags for 12 games. The VGLC format required a
combination of hand and computer annotations and static
file analysis to complete, and its plain-text labels for tile
types range from game-specific (particular enemies in Super
Mario Bros.) to general (e.g., “solid”, “breakable”). Our cor-
pus is complementary, focusing on object affordances and
interactions in a universal schema, and working at the level
of pixels instead of tiles. Importantly, we are concerned with
game screenshots and not game levels, so our schema and
use cases are unlikely to be fully reconcilable.

A related recent application of the VGLC is explainable
PCGML (Guzdial et al. 2018). Using level encodings from
the VGLC along with expert-provided design pattern labels
allows a generator to justify its creations in human-relevant

terms, which is vital in a co-creative mixed-initiative setting.
Coming from the opposite direction of the VGLC, au-

tomated game design learning (AGDL) is a broad project
which has as its goal the automatic extraction of high-level
design elements (Osborn, Summerville, and Mateas 2017b).
While AGDL focuses on learning game rules from observa-
tion and experimentation, our work abstracts specific rules
away to focus on broad classes of interaction, and (for now)
requires manual tagging.

Conclusion
Our immediate next step is to expand the corpus, both in
terms of depth (screenshots and object coverage in each
game) and breadth (more games in different genres, with
different art styles). Besides manual annotation, we hope
to explore the use of instrumented emulators to identify
tiles and sprites (Osborn, Summerville, and Mateas 2017a)
and to capture object interactions (Summerville et al. 2017;
Summerville, Osborn, and Mateas 2017). We also believe
that there are natural semi-supervised learning tasks on this
corpus: for example, pasting sprites into a sprite-free im-
age at random locations, or reassembling a game screenshot
which has been broken up like a jigsaw puzzle (Noroozi and
Favaro 2016). Finally, augmenting our dataset with cultural
information in free text could help form a fuller understand-
ing of why game objects seem to afford certain uses.

This work is a first step towards helping computers see
games as people do, which seems to be a necessary step to-
wards more sample-efficient game playing algorithms. Even
though we have focused on instrumental affordances, we
have already seen promising initial results in predicting af-
fordances from screenshots. We have also shown that this
affordance-oriented view of game images will be useful in
game-playing agents and beyond.
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